Overview and

arect onerorcter Physiology

Basic Definitions

- Physiologic Responses to Exercise
- Maximal Aerobic Capacity and Exercise Testing
- Energy Systems

Skeletal Muscle Fiber Types
Terms and Concepts Associated with Exercise

Minute ventilation or VE (L/min) = Tidal volume (L/breathing) X Breathing rate (Breaths/min)

- Measure of volume of air passing through pulmonary system:air expired/minute

Variables	Tidal Volume (L/breathing)	Breathing Rate (breaths/min)
Rest	$10-14$	$10-20$
Maximal Exercise	$100-180$	$40-60$

Relation Between

 Breaitinc and Ventitition

Stroke Volume (SV)

- Amount of blood ejected from heart with each beat (ml/beat).

Rest	Exercise (max)	Max occurs
$80-90$	$110-200$ (Depending on training status)	$40-50 \%$ of $\mathrm{VO}_{2 \text { max }}$ untrained Up to $60 \% \mathrm{VO}_{2 \text { max }}$ in athletes

Cardiac Output (CO)

Amount of blood ejected from heart each $\min (\mathrm{L} / \mathrm{min}$).

- Stroke Volume x Heart Rate
- Fick Equation:
$\mathrm{CO}=\mathrm{VO}_{2} /\left(\mathrm{a}-\mathrm{vO}_{2}\right)$
Rest: ~ 5 L/min
Exercise: ~10 to 25 L/min
Primary Determinant = Heart rate

Cardiac Output = SV x HR
Rest: ~ 5.0 L/min
Maximal Exercise: up to $30 \mathrm{~L} / \mathrm{min}$

\% of Maximal Oxygen Uptake

Maximal Aerobic Power

Also known as oxygen consumption, oxygen uptake, and cardiorespiratory fitness.

- Greatest amount of O_{2} a person can use during physical exercise.
- Ability to take in, transport and deliver O_{2} to skeletal muscle for use by tissue.

Expressed as liters (L) /min or ml/kg/min.

Assessing

Direct Measure: Rearrange Fick Equation: $\mathrm{VO}_{2}=$ COX (a - $\mathrm{V}_{\mathrm{O} 2}$)

- Indirect Measure: gas exchange at mouth: $\mathrm{VO}_{2}=$ $\mathrm{V}_{\mathrm{E}} \mathrm{X}\left(\mathrm{F}_{\mathrm{IO} 2}-\mathrm{F}_{\mathrm{EO} 2}\right)$
- Rest: 0.20 to $0.35 \mathrm{~L} / \mathrm{min}$
- Maximal Exercise: 2 to 6 L/min

An index of maximal cardiovascular and pulmonary function.

- Single most useful measurement to characterize the functional capacity of the oxygen transport system.

Limiting factor in endurance performance

Determinants of VO ,

Peripheral Factors

- Muscle Blood Flow
- Capillary Density
- O_{2} Diffusion
- O_{2} Extraction $\mathrm{Hb}-\mathrm{O}_{2}$ Affinity Muscle Fiber Profiles

Central Factors

- Cardiac Output
- Arterial Pressure
- Hemoglobin
- Ventilation
O_{2} Diffusion
$\mathrm{Hb}-\mathrm{O}_{2}$ Affinity
Alveolar Ventilation Perfusion ratio

Intrinsic

- Genetic
- Gender
- Body Composition
- Muscle mass
- Age

Pathologies

Extrinsic

- Activity Levels
- Time of Day
- Sleep Deprivation
- Dietary Intake
- Nutritional Status

Environment

Primary Criteria

- $<2.1 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$ increase with 2.5% grade increase often seen as a plateau in VO_{2}
- Secondary Criteria
- Blood lactate $\geq 8 \mathrm{mmol} / \mathrm{L}$
- RER ≥ 1.10
\uparrow in HR to 90% of age predicted RPE ≥ 17

\therefore<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">70</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 70 |
| :--- |</table-markdown></div> - Sedentary $\mathrm{VO}_{2 \text { max }}(\mathrm{ml} / \mathrm{kg} / \mathrm{m}$
 10

 Age (yr)

Gender, Age and

Effect of Bedrest on

c

$\mathrm{VO}_{2 \max }$ Classification for Men tuittcimin

Age (yrs) Low Fair Average Good High
20-29 <25 25-33 $34-42$ 43-52 $53+$
30-39 <23 23-30 31-38 39-48 49+
40-49 <20 20-26 27-35 36-44 45+
50-59 < 48 18-24 $25-33 \quad 34-42 \quad 43+$
$60-69<16 \quad 16-22 \quad 23-30 \quad 31-40 \quad 41+$

$\mathrm{VO}_{2 \max }$ Classification for tomen (milkc/min)

Age (yrs) Low Fair Average Good High

$$
\begin{array}{llllll}
20-29 & <24 & 24-30 & 31-37 & 38-48 & 49+ \\
30-39 & <20 & 20-27 & 28-33 & 34-44 & 45+ \\
40-49 & <17 & 17-23 & 24-30 & 31-41 & 42+ \\
50-59 & <15 & 15-20 & 21-27 & 28-37 & 38+ \\
60-69 & <13 & 13-17 & 18-23 & 24-34 & 35+
\end{array}
$$

Respiratory Exchange Rotiol

Respiratory Exchange Ratio (RER): ratio of CO_{2} expired/O O_{2} consumed
 - Measured by gases exchanged at the mouth.

- Respiratory Quotient (RQ): ratio of CO_{2} produced by cellular metabolism to O_{2} used by tissues
Measurements are made at cellular level

Useful indicator of type of substrate (fat vs. carbohydrate) being metabolized:

Fat is the first fuel source used during exercise. As RQ/RER increases towards 1.0 the use of CHO as energy increases.

RER/RQ typically ranges from . 70 to 1.0^{+}

Estimating Maximal Heatinte

OLD FORMULA: 220 - age
NEW FORMULA: 208-0.7 X age
New formula may be more accurate for older persons and is independent of gender and habitual physical activity

Age	Old Formula	New Formula
60	160	166
40	180	180
20	200	194

- Estimated maximal heart rate may be 5 to 10\% (10 to 20 bpm) > or < actual value.

Typical Ways to Measure

 1/O
Treadmill (walking/running)

- Cycle Ergometry
- Arm Ergometry
- Step Tests

Maximal Values Achieved

Types of Exercise
Uphill Running
Horizontal Running
Upright Cycling
Supine Cycling
Arm Cranking
Arms and Legs
Step Test
\% of $\mathrm{VO}_{2 \text { max }}$
100\%
95-98\%
93-96\%
82-85\%
65-70\%
100-104\%
97\%

Energy Systems for Forerise

Energy Systems

Mole of
ATP/min

Immedlate: Phosphagen (Phosphocreatine and ATP)
Short Term: Glycolytic (Glycogen-Lactic Acid)

Aerobic

4
$2.5 \quad 1.0$ to 1.6 min
Unlimited time

Anaerobic vs. Aerobic

 Energy SystemsAnaerobic
ATP-CP : ≤ 10 sec.

- Glycolysis: A few minutes

Aerobic

- Krebs cycle

Electron Transport Chain $\}$

Energy Systems

Energy Transfer Systems and Exercise

Skeletal Muscle Fiber Types

C
Fast-Twitch
Type Ila Type IId(x)

Slow-Twitch Type I

Skeletal Muscle Fiber Types

Characterized by differences in morphology, histochemistry, enzyme activity, surface characteristics, and functional capacity.

- Distribution shows adaptive potential in response to neuronal activity, hormones, training/functional demands, and aging.

Change in a sequential manner from either slow to fast or fast to slow.

Skeletal Muscle

tund le of muscle fisers
Single
matele fiser

Actin (thin flament)

Characteristics of Human Tivscie Floer Tyoes

Other Terminology	Slow Twitch Type la		Fast Twitch Type Ila	
Aerobic Capacity	HIGH	MED/HIGH Ild(x)	MED	
Myoglobin Content	HIGH	MED	LOW	
Color	RED	RED	PINK/WHITE	
Fatigue Resistance	HIGH	MED/HIGH	MED	
Glycolytic Capacity	LOW	MED	MED/HIGH	
Glycogen Content	LOW	MED	HIGH	
Triglyceride Content	HIGH	MED	MED/LOW	
Myosin Heavy Chain (MHC)	MHCIb	MHCIIa	MHCIId(x)	

Terms and Concepts Associated with Exereise

- Rating of Perceived Exertion
- Training Heart Rate
- Energy Expenditure
- Thresholds and Exercise Domains
- O_{2} Deficit and Excess Post-Exercise
O_{2} Consumption

Rating of Perceived

7 Very, very light

Very light
11
Fairly light
Lactate Threshold
13 Somewhat hard

Very hard
2.0 mM Lactate

Hard
2.5 mM Lactate 19

Verv, verv hard

Approaches to Determining Troininc Henut Dote

60 to 90\% of Maximal HR

- Max HR = 180
- $60 \%=108$ and $90 \%=162$
- 50 to 85% of Heart Rate Reserve
- Max HR = 180 and Resting HR = 70
- HRR = 180-70 = 110
$50 \%=70+65=135 ; 85 \%=94+70=164$
Plot HR vs. O_{2} Uptake or Exercise Intensity

MET: Energy cost as a multiple of resting metabolic rate

- 1 MET = energy cost at rest $\sim 3.5 \mathrm{ml}$ of $\mathrm{O}_{2} / \mathrm{kg} / \mathrm{min}$
- 3 MET $=10.5 \mathrm{ml}$ of $\mathrm{O}_{2} / \mathrm{kg} / \mathrm{min}$
- 6 MET $=21.0 \mathrm{ml}$ of $\mathrm{O}_{2} / \mathrm{kg} / \mathrm{min}$
$1 \mathrm{~L} / \mathrm{min}$ of O_{2} is $\sim 5 \mathrm{kcal} / \mathrm{L}$
$\mathrm{VO}_{2}(\mathrm{~L} / \mathrm{min}) \sim 5 \mathrm{kcal} / \mathrm{L}=\mathrm{kcal} / \mathrm{min}$
1 MET = $0.0175 \mathrm{kcal} / \mathrm{kg} / \mathrm{min}$

A product of glycolysis formed from reduction of pyruvate in recycling of NAD or when insufficient O_{2} is available for pyruvate to enter the TCA cycle.

- Extent of lactate formation depends on availability of both pyruvate and NADH.

Blood lactate at rest is about 0.8 to 1.5 mM , but during intense exercise can be in excess of 18 mM.

Lactate Threshold

- Intensity of exercise at which blood lactate concentration is 1 mM above baseline.
- Expressed as a function of $\mathrm{VO}_{2 \text { max, }}$ i.e., 65% of $\mathrm{VO}_{2 \text { max }}$
- Expressed as a function of velocity or power output, i.e., 150 W or 7.5 mph .

Lactate Threshold

C

Describes the point at which pulmonary ventilation increases disproportionately with oxygen consumption during graded exercise.

At this exercise intensity, pulmonary ventilation no longer links tightly to oxygen demand at the cellular level.

Ventilatory Threshold

By V Slope Method

亿10)(0)

Exercise In'ensity Domains

Moderate Exercise
All work rates below LT

- Heavy Exercise:
- Lower boundary: Work rate at LT
- Upper boundary: highest work rate at which blood lactate can be stabilized (Maximum lactate steady state)
Severe Exercise:
Neither O_{2} or lactate can be stabilized

Oxygen Uptake and Evomoine nomeine

INCREMENTAL
 CONSTANT LOAD

O_{2} Deficit = difference between total O_{2} used during exercise and total that would have been used if steady state had been achieved immediately

Excess Post-Exercise O_{2} Consumption (EPOC) or O_{2} debt = increased rate of O_{2} used during recovery period. The extra oxygen is used in the processes that restore the body to a resting state and adapt it to the exercise just performed.

EPOC

Fast component (Alactacid debt??) = when prior exercise was primarily aerobic; repaid within 30 to 90 sec; restoration of ATP and CP depleted during exercise.

Slow component (Lactacid debt) = reflects strenuous exercise; may take up to several hours to repay; may represent re-conversion of lactate to glycogen.

Things to remember:

- Know the basic definitions \& normal values
- Understand $\mathrm{VO}_{2 \text { max }}$
- Recognize differences in terms often used interchangeably
- Review energy systems for exercise
- Be familiar w/ terms \& concepts associated w/ exercise

Questions???

C

