Overview and Basics of Exercise Physiology

Topics to Cover

- Basic Definitions
- Physiologic Responses to Exercise
- Maximal Aerobic Capacity and Exercise Testing
- Energy Systems
- Skeletal Muscle Fiber Types
- Terms and Concepts Associated with Exercise

Pulmonary Ventilation

- Minute ventilation or VE (L/min) = Tidal volume (L/breathing) X Breathing rate (Breaths/min)
- Measure of volume of air passing through pulmonary system:air expired/minute

Variables	Tidal Volume (L/breathing)	Breathing Rate (breaths/min)
Rest	10 - 14	10 – 20
Maximal Exercise	100 – 180	40 - 60

Relation Between Breathing and Ventilation

Stroke Volume (SV)

 Amount of blood ejected from heart with each beat (ml/beat).

Rest	Exercise (max)	Max occurs
80 — 90	110 – 200 (Depending on training status)	 40-50% of VO_{2 max} untrained Up to 60% VO_{2 max} in athletes

Cardiac Output (CO)

- Amount of blood ejected from heart each min (L/min).
- Stroke Volume x Heart Rate
 - Fick Equation:
 CO = VO₂/(a v O₂)
 - Rest: ~ 5 L/min
 - Exercise: ~10 to 25 L/min
- Primary Determinant = Heart rate

Relation Between SV and CO

Cardiac Output = SV x HR Rest: ~ 5.0 L/min Maximal Exercise: up to 30 L/min

Maximal Aerobic Power (VO_{2 max})

- Also known as oxygen consumption, oxygen uptake, and cardiorespiratory fitness.
- Greatest amount of O₂ a person can use during physical exercise.
- Ability to take in, transport and deliver O₂ to skeletal muscle for use by tissue.
- Expressed as liters (L) /min or ml/kg/min.

Assessing VO₂

- Direct Measure: Rearrange Fick Equation: VO₂ = CO X (a - v_{O2})
- Indirect Measure: gas exchange at mouth: VO₂ = V_E X (F_{IO2} F_{EO2})
 - Rest: 0.20 to 0.35 L/min
 - Maximal Exercise: 2 to 6 L/min

Importance of VO_{2 max}

- An index of maximal cardiovascular and pulmonary function.
- Single most useful measurement to characterize the functional capacity of the oxygen transport system.
- Limiting factor in endurance performance

Determinants of VO_{2max}

Peripheral Factors

- Muscle Blood Flow
- Capillary Density
- O₂ Diffusion
- O₂ Extraction
- Hb-O₂ Affinity
- Muscle Fiber Profiles

Central Factors

- Cardiac Output
- Arterial Pressure
- Hemoglobin
- Ventilation
 - O₂ Diffusion
 - Hb-O₂ Affinity
 - Alveolar Ventilation Perfusion ratio

Factors Affecting VO_{2max}

<u>Intrinsic</u>

- Genetic
- Gender
- Body Composition
- Muscle mass
- Age
- Pathologies

<u>Extrinsic</u>

- Activity Levels
- Time of Day
- Sleep Deprivation
- Dietary Intake
- Nutritional Status
- Environment

Common Criteria Used to Document VO_{2 max}

- Primary Criteria
 - < 2.1 ml/kg/min increase with 2.5% grade increase often seen as a <u>plateau</u> in VO₂
- Secondary Criteria
 - Blood lactate ≥ 8 mmol/L
 - RER ≥ 1.10
 - In HR to 90% of age predicted
 - RPE ≥ 17

Aging, Training, and VO_{2max}

Gender, Age and VO_{2max}

Effect of Bed rest on VO_{2max}

Data from VA Convertino MSSE 1997

VO_{2max} Classification for Men (ml/kg/min)

Age (yrs)	Low	Fair	Average	Good	High
20 - 29	<25	25 - 33	34 - 42	43 - 52	53+
30 - 39	<23	<mark>23 - 3</mark> 0	31 - 38	39 - 48	49 +
40 - 49	<20	20 - 26	27 - 35	36 - 44	45+
50 - 59	<18	18 - 24	25 - 33	34 - 42	43+
60 - 69	<16	16 - 22	23 - 30	31 - 40	41+

VO_{2max} Classification for Women (ml/kg/min)

Age (yrs) Low Fair Average Good High 20 - 29 <24 24 - 30 31 - 37 38 - 48 49+ 30 - 39 <20 20 - 27 28 - 33 34 - 44 45+ 40 - 49 <17 17 - 23 24 - 30 31 - 41 42+ 50 - 59 <15 15 - 20 21 - 27 28 - 37 38+ 60 - 69 <13 13 - 17 18 - 23 24 - 34 35+

Respiratory Exchange Ratio/Quotient

- Respiratory Exchange Ratio (RER): ratio of CO₂ expired/O₂ consumed
 - Measured by gases exchanged at the mouth.
- Respiratory Quotient (RQ): ratio of CO₂ produced by cellular metabolism to O₂ used by tissues
 - Measurements are made at cellular level
- Useful indicator of type of substrate (fat vs. carbohydrate) being metabolized:
 - Fat is the first fuel source used during exercise. As RQ/RER increases towards 1.0 the use of CHO as energy increases.
- RER/RQ typically ranges from .70 to 1.0⁺

Estimating Maximal Heart Rate

• OLD FORMULA: 220 – age

NEW FORMULA: 208 - 0.7 X age

New formula may be more accurate for older persons and is independent of gender and habitual physical activity

Age	Old Formula	New Formula
60	160	166
40	180	180
20	200	194

Estimated maximal heart rate may be 5 to 10% (10 to 20 bpm) > or < actual value.

Typical Ways to Measure VO_{2max}

- Treadmill (walking/running)
- Cycle Ergometry
- Arm Ergometry
- Step Tests

Maximal Values Achieved During Various Exercise Tests

Types of Exercise Uphill Running Horizontal Running Upright Cycling Supine Cycling Arm Cranking Arms and Legs Step Test

<u>% of VO_{2max}</u> 100%

95 - 98% 93 - 96% 82 - 85% 65 - 70% 100 - 104%

97%

Energy Systems for Exercise

Energy Systems	Mole of ATP/min	Time to Fatigue
Immediate: Phosphagen (Phosphocreatine and ATP)	4	5 to 10 sec
Short Term: Glycolytic (Glycogen-Lactic Acid)	2.5	1.0 to 1.6 min
Long Term: Aerobic	1	Unlimited time

Anaerobic vs. Aerobic Energy Systems

- Anaerobic
 ATP-CP : ≤ 10 sec.
 Glycolysis: A few minutes
- Aerobic
 - Krebs cycle
 - Electron Transport Chain

Energy Transfer Systems and Exercise

Skeletal Muscle Fiber Types

- Fast-Twitch
 Type IIa
 Type IId(x)
- <u>Slow-Twitch</u>
 Type I

Skeletal Muscle Fiber Types

- Characterized by differences in morphology, histochemistry, enzyme activity, surface characteristics, and functional capacity.
- Distribution shows adaptive potential in response to neuronal activity, hormones, training/functional demands, and aging.
- Change in a sequential manner from either slow to fast or fast to slow.

Characteristics of Human Muscle Fiber Types

Other Terminology	Slow Twitch	Fast Twitch	
	<u>Type la</u>	<u>Type lla</u>	<u>Type IId(x</u>)
Aerobic Capacity	HIGH	MED/HIGH	MED
Myoglobin Content	HIGH	MED	LOW
Color	RED	RED	PINK/WHITE
Fatigue Resistance	HIGH	MED/HIGH	MED
Glycolytic Capacity	LOW	MED	MED/HIGH
Glycogen Content	LOW	MED	HIGH
Triglyceride Content	HIGH	MED	MED/LOW
Myosin Heavy Chain (MHC)	MHCIb	MHCIIa	MHCIId(x)

Terms and Concepts Associated with Exercise

- Rating of Perceived Exertion
- Training Heart Rate
- Energy Expenditure
- Thresholds and Exercise Domains
- O₂ Deficit and Excess Post-Exercise
 O₂ Consumption

Rating of Perceived Exertion: RPE/Borg Scale

6 7	Very, very light	
8		
9 1() Very light	
1 ⁻	Fairly light	Lactate Threshold
1:	Somewhat hard	
14	ł	2.0 mM Lactate
1		
1	6 Hard	2.5 mM Lactate
17	Very hard	4 0 mM Lactate
18		
19	Very, very hard	

Approaches to Determining Training Heart Rate

• 60 to 90% of Maximal HR

- Max HR = 180
- 60% = 108 and 90% = 162
- 50 to 85% of Heart Rate Reserve
 - Max HR = 180 and Resting HR = 70
 - HRR = 180 70 = 110
 - 50% = 70 + 65 = 135; 85% = 94 + 70 = 164

Plot HR vs. O₂ Uptake or Exercise Intensity

Heart Rate and VO_{2max}

Energy Expenditure

- MET: Energy cost as a multiple of resting metabolic rate
 - I MET = energy cost at rest ~3.5 ml of O₂/kg/min
 - 3 MET = 10.5 ml of O₂ /kg/min
 - 6 MET = 21.0 ml of O₂ /kg/min
- 1 L/min of O₂ is ~ 5 kcal/L
 - VO₂ (L/min) ~ 5 kcal/L = kcal/min
- 1 MET = 0.0175 kcal/kg/min

Lactate/Lactic Acid

- A product of glycolysis formed from reduction of pyruvate in recycling of NAD or when insufficient O₂ is available for pyruvate to enter the TCA cycle.
- Extent of lactate formation depends on availability of both pyruvate and NADH.
- Blood lactate at rest is about 0.8 to 1.5 mM, but during intense exercise can be in excess of 18 mM.

Lactate Threshold

- Intensity of exercise at which blood lactate concentration is 1 mM above baseline.
- Expressed as a function of VO_{2max}, i.e., 65% of VO_{2max}.
- Expressed as a function of velocity or power output, i.e., 150 W or 7.5 mph.

Lactate Threshold

Blood Lactate as a Function of Training

Blood Lactate (mM)

Ventilatory Threshold

- Describes the point at which pulmonary ventilation increases disproportionately with oxygen consumption during graded exercise.
- At this exercise intensity, pulmonary ventilation no longer links tightly to oxygen demand at the cellular level.

Ventilatory Threshold

Ventilatory Threshold

Exercise Intensity Domains

Moderate Exercise

- All work rates below LT
- Heavy Exercise:
 - Lower boundary: Work rate at LT
 - Upper boundary: highest work rate at which blood lactate can be stabilized (Maximum lactate steady state)
- Severe Exercise:
 - Neither O₂ or lactate can be stabilized

Oxygen Uptake and Exercise Domains

Lactate and Exercise Domains

Oxygen Deficit and Debt/EPOC

- <u>O₂ Deficit</u> = difference between total O₂ used during exercise and total that would have been used if steady state had been achieved immediately
- Excess Post-Exercise O₂ Consumption (EPOC) or O₂ debt = increased rate of O₂ used during recovery period. The extra oxygen is used in the processes that restore the body to a resting state and adapt it to the exercise just performed.

Oxygen Deficit and Debt

EPOC or Recovery VO₂

- Fast component (Alactacid debt??) = when prior exercise was primarily aerobic; repaid within 30 to 90 sec; restoration of ATP and CP depleted during exercise.
- Slow component (Lactacid debt) = reflects strenuous exercise; may take up to several hours to repay; may represent re-conversion of lactate to glycogen.

Things to remember:

- Know the basic definitions & normal values
- Understand VO_{2 max}
- Recognize differences in terms often used interchangeably
- Review energy systems for exercise
- Be familiar w/ terms & concepts associated w/ exercise

Questions???

