Unit 4: Exercise Physiology

for Health, Fitness, and Performance

Lecture No. 5

Research Areas and Basic Concepts Used in Exercise Physiology

I. What is Exercise Physiology?

Exercise Physiology is both a basic and applied science that describes, explains, and uses the body's response to exercise and adaptation to exercise training to maximize human physical potential

Overview of Lecture

- A. Consistent order of presentation
 - 1. Basic science
 - 2. Exercise response
 - 3. Application of training principles
 - 4. Training adaptations, and
 - 5. Special concerns (health-related)

B. Organized according to body systems

Neuroendocrine-Immune System

- Maintenance of homeostasis
- Regulation of the body's response to exercise and adaptation to training

Cardiovascular-Respiratory System

Circulation:

- Transportation of oxygen and energy substrates to muscle tissue
- Transportation of waste products Respiration:
- Intake of air into body
- Diffusion of oxygen and carbon dioxide at lungs and muscle tissue
- Removal of carbon dioxide from body

Metabolic System

- Production of energy
- Balance of energy intake and output for body composition and weight control

Neuromuscular-Skeletal System

- Locomotion (exercise)
- Movement brought about by muscular contraction (under neural stimulation acting on bony levers of skeletal system)

III. Exercise Response

Exercise - A single acute bout of bodily exertion or muscular activity that requires expenditure of energy above resting level and that in most cases results in voluntary movement

Exercise Response - The physiological responses which occur during or immediately following an acute bout of exercise

Can be described based on 3 factors

- A. Exercise modality (mode) type of activity or sport
 - Energy demand (aerobic or anaerobic)
 - Type of muscle action (continuous, rhythmical or resistance, or static)

- B. Exercise intensity
 - a. Maximal
 - b. Submaximal
 - Absolute workload
 - Relative workload
- C. Exercise duration

IV. Exercise Categories

A. Short-term, light to moderate submaximal aerobic exercise

10-15 min

~30-69% of maximal work capacity

B. Long-term, moderate to heavy submaximal aerobic exercise

30-240 min

~55-89% of maximal work capacity

C. Incremental aerobic exercise to maximum

Progresses in stages from light to maximal

D. Static exercise

Described as a percent of maximal voluntary contraction (%MVC)

E. Dynamic resistance exercise

Described as a percent of maximal weight that can be lifted (1-RM) and number of times lifted.

F. Very short-term, high intensity anaerobic exercise

Often supramaximal when compared to maximal aerobic capacity

Summary of Exercise Responses

TABLE 1.2Color and Icon Interpretation for Exercise Response Patterns				
Exercise Category		Color	lcon	
Short-term, light to moderate submaximal aerobic			沦	
Long-term, moderate to heavy submaximal aerobic				
Incremental ae to maximum	robic		<u>بْ</u>	
Static				
Dynamic resist	ance		[►] \•/ ⁺ /\	
Very short-tern anaerobic	n, high-intensity			

V. Exercise Response Patterns

Constant workload/workrate

VI. Exercise Response Interpretations

Based on:

- 1. Characteristics of the exerciser
- 2. Appropriateness of the selected exercise
- 3. Accuracy of the selected exercise
- 4. Environmental and experimental conditions

VII. Training

Training - A consistent or chronic progression of exercise sessions designed to improve physiological function for better health or sport performance

A. Health-Related vs. Sport-Specific Physical Fitness

Physical Fitness - A physiological state of wellbeing that provides the foundation for the tasks of daily living, a degree of protection against hypokinetic disease, and a basis for participation in sport

HRPF- That portion of physical fitness directed toward the prevention of, or rehabilitation from, disease as well as the development of a high level of functional capacity for the

necessary and discretionary tasks of life SSPF- That portion of physical fitness directed toward

optimizing athletic performance

Sport-specific physical fitness Health-related physical fitness

B. Dose-Response Relationships

What are the health benefits (or performance benefits) of varying amounts of exercise?

C. Training Principles

- 1. Specificity
- 2. Overload
- 3. Rest/Recovery/Adaptation
- 4. Progression
- 5. Retrogression/Plateau/Reversibility
- 6. Maintenance
- 7. Individualization
- 8. Warm-Up/Cool-Down

D. Periodization

A plan for training based on a manipulation of the fitness components with the intent of peaking the athlete for the competitive season or varying health-related fitness training in cycles of harder or easier training.

Periodization Phases

- 1. General Preparatory phase (off-season)
- 2. Specific Preparatory phase (preseason)
- **3.** Competitive phase (in-season)
- 4. Transition phase (active rest)

E. Training Adaptations

VIII. Detraining

 Detraining is the partial or complete loss of training-induced adaptations as a result of a training reduction or cessation

IX. Exercise & Training as Stressors

A. Selye's Theory of Stress Stages

- 1. Alarm-Reaction: Shock and Countershock
- 2. Stage of Resistance
- **3.** Stage of Exhaustion

B. Selye's Theory Applied to Exercise and Training

TABLE 1.3 Selye's Theory of Stress Applied to Exercise Physiology				
Stage	Exercise Response	Training Principle	Training Adaptation/ Maladaptation	
I. Alarm-Reaction a. Shock b. Countershock	Neuroendocrine system stimulated a. Homeostasis disrupted b. Begin to attain elevated steady state	Warm-up/Cooldown Overload Progression*	Dampened response to equal acute exercise stimulus	
II. State of Resistance	Elevated homeostatic steady state maintained if exercise intensity is unchanged	Adaptation Maintenance Specificity (SAID) Individualization Reversibility	Enhanced function/physical fitness/health; increased maximal exercise depending on imposed demand and individual neuroendocrine physiology Adaptation is reversible with detraining Overreaching [†]	
III. Stage of Exhaustion	Fatigue, a temporary state, reversed by proper rest and nutrition	Retrogression/ plateau reversibility	Overreaching Overtraining syndrome Maladaptation changes in neuroendocrine systems	
*The cycle of adaptation and progression occurs repeatedly during a training program.				

[†]If overreaching is planned and recovery is sufficient, positive adaptation results; if overreaching is accompanied by insufficient recovery and additional overload, overtraining will result.

Copyright @ 2014 Wolters Kluwer Health | Lippincott Williams & Wilkin

C. Training Adaptations & Maladaptations

- Overreaching: a short-term decrement in performance capacity that is easily recovered from and generally lasts only a few days to 2 weeks.
- Overtraining syndrome (OTS): state of chronic decrement in performance and ability to train, in which restoration may take several weeks, months, or even years.

Thank You...!