### Design and Analysis of Algorithms

Introduction to Algorithms

### **Books To Be Referred**

 Fundamentals of Computer Algorithms –
Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajakaran
Galgotia Publications

☑ Galgotia Publications

 Introduction to Algorithms , II<sup>nd</sup> Edition –
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
Prentice – Hall India (PHI)

### Content

What is Algorithm?
Why Study Algorithm?
Algorithm Specifications
Analysis of Algorithms
Algorithms Design Strategies/Techniques

## What is Algorithm?

Introduction to Algosithm -s - Introduction -> (user) -> The (computer) A man thinks a computer can do any thing I everything 7 - ISEL DEMS Liser (Backend Support)? Clenario for rearding a query -> Leven II -> [IS] Berron II -> [IS] B Information System Derd A common man rarely understands that a man jub; But It's not real Ichind the 3 Internation System -> It should know what yes Can frequently search ie - VIET. IS make structured Information -> Computer > Henry Recorded hight date accomplished A set of dustractions Designer of IS Program -> Algo. 7]

### Algorithm

- An <u>algorithm</u> is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.
- A finite set of instructions which if followed accomplish a particular task.



Definitions of Algorithm ->

Name Algorithm Conce from Afghamistan's Mathematician "Abu jafar Muhammad ibn Mysa Al- Khwarizmi" in Ninth Century.

Ø

- () An Algorithm is a set of Kules for Carrying out Calculation either by hand or on a machine.
- (2) An Algorithmix a Sequence of computational steps that transform the Input into the output.
- (3) An Algorithm is a Sequence of operations performed on data that have to be organized in 2 ata structures.
- ( A finite set of hystructions that specify a sequence of operations to be carried out in order to solve a specific problem or class of problems is called an Algo.
  - (5) An Algorithm is an Abstraction of a program to be executed on a physical Machine.
  - 6 An Algorithm is a finite set of Instruction that accomplishes a particular task.

- "An Algorithm can be defined as a requence of definite 4 Effective instructions while terminates with the production of correct output from the given Input."
- -> Algorithm that are definite 4 effective are also Called "Computational procedures".
- -> The ptudy of algorithm includer many important and active areas of research.
  - There are 4 Distinct areas of study
  - O How to devixe an Algorithm.

0

- 2 How to Validate an Algorithm.
- 3 How to analyze on Algorithm
- 5 Hos to text a program.

### Algorithm (Cont...)

In addition every algorithm must satisfy following criteria:

- Input Zero or more quantities externally supplied
- Output At least one output is produced
- Definiteness Each Instruction must be clear & unambiguous
- Finiteness Algorithm must terminate after finite number of steps
- Effectiveness Instruction should be easily understandable and sufficiently Simple and basic

## Why Study Algorithm?

Jetinitie Why study Algorithm -> > Performance Have Increased ? + Processor of pleed fucreases -Problem size Mutters -> Large size -> lerformance Longer Computation time Slower the Repults

- The Study of Algorithm gives up a language to express performance as a function of Iroblem Size.

### Example



# **Algorithm Specifications**

### **Algorithm Specifications**

# ALGORITHM vs PROGRAM: The PROGRAM does not have the Finiteness condition.

Algorithm v/s grogram > Programming Structure -> Broklam inalysix pobler Algorithus 1 Algorithus 1 Algorithus 2/ (3) Flowthart ]= ]zojm O Algorithm 75 O greatocote Algorithm 3 K Ellogane O Coding 1= (Payrams Tenting 0 Do Cumentation. 0 In Computational Theory, Algo & program are Different. Program -> Poor not have to satisfy the Finiteness Condition Algorithm - have a termination condition. The designing that of a Problem Program -> Inplanent then chase of a designed Algo. So the Concrete Expression of an Algorithm in a particular programming language is called a program.

#### Pseudo code

- Pseudocode is an English language like representation of the code required for an algorithm.
- It is partly English, partly structured code.
- The English part provides a relaxed syntax that is easy to read.
- The code part consists of an extended version of the basic algorithmic constructs-sequence, selection and iteration.

# Analysis of Algorithm

Solving Problem in Computer Science, Before writing Program, we can write a duformal Description of Rolution Called Algorithm. - Algo is in Informal due to Problem St is like to communicate before implementation. [ Program st in C] For writing q Poog van, we need Algo. It you a problem, You may have many solution. Problem & Program (Algo) - a. Ac no no Ay -- An - Every Algo can be suplanented in form of the Brogram. we have to neet to know which Algo is good in terms of Time 4 memory (space). Time I manory take leve considerat as good . Derign -> how can we Derign Algo for firen Problem Andysis - I how to Analyze these Also in respect of Time & of Algosithm

### **Analysis of Algorithm**

Issues:
Correctness
Time Efficiency
Space Efficiency
Optimality

Approaches:
Theoretical Analysis
Empirical Analysis

### **Time Efficiency**

- Time T (P) taken by a program P is the sum of the Compile time and run (or execution) time.
- Program once compiled can be run several times.
- Compile time does not depend on the instance characteristics.

### **Space Efficiency**

- Space Complexity is the amount of memory an algorithm needs to run to completion.
- Space needed by an algorithm can be sum of following components:
  - A fixed part that is independent of the characteristics of the input & outputs. This part typically includes the instruction space, space for variables, constants etc.
  - A variable part consists of the space needed by component variables whose size is dependent on the particular problem instance being solved.

### **Theoretical Analysis of Time Efficiency**

Time efficiency is analyzed by determining the number of repetitions of the *basic operation* as a function of *input size*.

Basic operation: the operation that contributes the most

towards the running time of the algorithm.

running time execution time for basic operation or cost Number of times basic operation is executed

#### **Empirical/Experimental Analysis of Time Efficiency**

Select a specific (typical) sample of inputs

Use physical unit of time (e.g., milliseconds) or Count actual number of basic operation's executions

Analyze the empirical data

# Algorithm Design Strategies / Techniques

### Algorithm Design Strategies / Techniques

- Brute force
- Divide and conquer
- Decrease and conquer
- Transform and conquer
- Greedy approach
- Dynamic programming
- Backtracking
- Branch-and-Bound
- Space and time tradeoffs