Analysis and Design of Algorithms

UNIT-1

Recurrence Relations

Content

- Solving Recurrence Relations
- Recursion/ Recurrence Tree Method

Recursion/ Recurrence Tree

Recurrence Tree

田 We can visualize iteration method as a recursion tree in which at each level nodes are expanded．
田 RECURSION TREE－＂Drawing a picture of the back substitution process（iteration method）gives you a idea of what is going on＂．
田 The recursion tree method is good for generating guesses for the substitution method．
田 A recursion tree models the costs（time）of a recursive execution of an algorithm．
田 The recursion－tree method promotes intuition，however．

Recurrence Tree

Here while solving recurrences, we divide the problem into sub-problems of equal size.
For e.g., $\mathbf{T}(\mathbf{n})=\mathbf{a} \mathbf{T}(\mathbf{n} / \mathbf{b})+\mathbf{f}(\mathbf{n})$
where $\mathrm{a} \geq 1, \mathrm{~b}>1$ and $\mathrm{f}(\mathrm{n})$ is a given function.
$\mathrm{F}(\mathrm{n})$ is the cost of splitting or combining the sub-problems.

Recurrence Tree

- In a recursion tree,
- each node represents the cost of a single subproblem somewhere in the set of recursive problems invocations.
- we sum the cost within each level of the tree to obtain a set of per level cost and
- then we sum all the per level cost to determine the total cost of all levels of recursion.

Example-1

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$

Example-1

$T(n)$

Example-1

Example-2

- Recursion-Tree = Diagrammatic Way of Doing Iterative Expansion

Solve $T(n)=3 T(n / 4)+c n^{2}$

Solution : on next page Diagrammatically.

Figgure 4, The construction of a recursion tree for the recurrence $T(n)=3 T(n / 4)+\mathrm{cm}^{2}$. Part (a) shows T (n). which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has height loge at (it has $\log _{4} n+1$ levels)

Example-2

- Constructing a recursion tree for the recurrence-

$$
T(n)=3 T(n / 4)+c n^{2}
$$

- Part (a) shows T (n), which progressively expands in (b)(d) to form the recursion tree.
- The fully expanded tree in part (d) has height-

$$
\log _{4} n \text { (it has } \log _{4} n+1 \text { levels). }
$$

- Sub problem size at depth $\mathrm{i}=\mathrm{n} / 4^{\mathrm{i}}$
- Sub problem size is 1 when $n / 4^{i}=1 \Rightarrow i=\log _{4} n$
- So, no. of levels $=1+\log _{4} n$
- Cost of each level = (no. of nodes) x (cost of each node)

No. Of nodes at depth $\mathrm{i}=3^{\mathrm{i}}$
Cost of each node at depth $\mathrm{i}=\mathrm{c}\left(\mathrm{n} / 4^{\mathrm{i}}\right)^{2}$
Cost of each level at depth $i=3^{i} c\left(n / 4^{i}\right)^{2}=(3 / 16)^{i} \mathrm{cn}^{2}$
$\mathrm{T}(\mathrm{n})=\mathrm{i}=0 \sum^{\log _{4} \mathrm{n}} \mathrm{cn}^{2}(3 / 16)^{\mathrm{i}}$
$\mathrm{T}(\mathrm{n})={ }_{\mathrm{i}=0} \sum^{\log _{4} \mathrm{n}-1} \mathrm{cn}^{2}(3 / 16)^{\mathrm{i}}+$ cost of last level
Cost of nodes in last level $=3^{i} \mathrm{~T}(1)$

$$
\begin{aligned}
& \Rightarrow \mathrm{c}^{\log _{4} \mathrm{n}} \quad\left(\text { at last level } \mathrm{i}=\log _{4} \mathrm{n}\right) \\
& \Rightarrow \mathrm{cn}^{\log _{4} 3} \\
& \mathrm{~T}(\mathrm{n})=\sum_{i=0}^{\log _{4} \mathrm{n}-4} \mathrm{cn}^{2}(3 / 16)^{i}+\mathrm{cn}^{\log _{4} 3} \\
& <=\mathrm{cn}^{2} \sum_{i=0}^{\infty}(3 / 16)^{i}+\mathrm{cn}^{\log _{4}{ }^{3}} \\
& \Rightarrow<=\mathrm{cn}^{2} *(16 / 13)+\mathrm{cn}^{\log _{4} 3} \Rightarrow \mathrm{~T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)
\end{aligned}
$$

Example-3

- Recursion-Tree = Diagrammatic Way of Doing Iterative Expansion

Solve $T(n)=2 T(n / 2)+n$

Solution : on next page Diagrammatically.

1) $\mathbf{T}(\mathbf{n})=2 T(\mathbf{n} / \mathbf{2})+\mathbf{n}$

The recursion tree for this recurrence is :

Example-3

When we add the values across the levels of the recursion tree, we get a value of n for every level.

$$
\begin{aligned}
\text { We have } & -n+n+n+\ldots \ldots \quad \log n \text { times } \\
& =n(1+1+1+\ldots \ldots \cdot \log n \text { times }) \\
& =n\left(\log _{2} n\right) \\
& =\Theta(n \log n) \\
T(n) & =\Theta(n \log n)
\end{aligned}
$$

Example-3(Second Method)

II.

Given : $\mathbf{T}(\mathbf{n})=\mathbf{2 T}(\mathbf{n} / \mathbf{2})+\mathbf{1}$
Solution : The recursion tree for the above recurrence is

Example-3(Second Method)

Now we add up the costs over all levels of the recursion tree, to determine the cost for the entire tree :

We get series like

$$
1+2+2^{2}+2^{3}+\ldots \ldots \log n \text { times } \quad \text { which is a G.P. }
$$

[So, using the formula for sum of terms in a G.P. :

$$
\begin{aligned}
a & \left.+a r+a r^{2}+a r^{3}+\ldots \ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}\right] \\
& =\frac{1\left(2^{\log n}-1\right)}{2-1} \\
& =\mathrm{n}-1 \\
& =\Theta(\mathrm{n}-1) \quad \text { (neglecting the lower order terms) } \\
& =\Theta(\mathrm{n})
\end{aligned}
$$

Example-3

Solve $T(n)=T(n / 3)+T(2 n / 3)+c n$

Solution : on next page Diagrammatically.

Figure 4.2 A recursion tree for the recurrence $T(n)=T(n / 3)+T(2 n / 3)+c r$

