Isozymes

D. A. HOPKINSON

From the MRC Human Biochemical Genetics Unit, Galton Laboratory, University College, London

A great many different enzymes have been found to exist in more than one molecular form as isozymes enon of isozyme formation is very common throughout a large number of species, including man
The principal technique which has been used in study of isozymes is the method of zone electrophoresis, usually in starch or acrylamide gels, together with a specific sensitive stain for the detection of the isozymes after electrophoresis. At first the staining methods available were limited and simple but new methods have been steadily developed and now probably more than a 100 different enzymes and their isozymes can be studied usually be accomplished relatively simply with such materials as crude tissue homogenates, red cell lysates, plasma, urine, saliva, etc, which do no require extensive treatment before analysis. Further more, zone electrophoresis methods can also b adapted to provide information about character istics such as substrate specificity, pH activity thermal stability, inhibition, reactive groups such sulphhydryl groups, as well as information about the electrophoretic properties of the isozymes of a particular enzyme. And all of these properties may be important in assessing the molecular character istics of a particular enzyme and its isozymes filtration chromatography and ion exchange chroma tography, may be useful, especially for the purification and detailed biochemical analysis of iso zymes but in general can be regarded as adjuncts to the electrophoretic methods of analysis. Even so, it should be emphasized that isozymes do no necessarily differ in their electrical charge and there fore do not always separate on electrophoresis. Alternative general methods for their separation, not dependent on charge differences, would be extremely useful and might reveal a whole new current methods.
However, it has become clear simply by th electrophoretic methods of analysis, that isozymes are complex and may be generated in a variety
of ways. Furthermore, even in the case of one particular enzyme, more than one kind of cause ma are actually observed One method of classificatio (Harris, 1969) divides isozymes into three categorie according to how they are generated and this system will be adopted in the present paper. Examples of each of the three major types of isozyme will be discussed

Secondary Isozymes

These are isozymes which arise by secondary change in the structure of an enzyme protein subsequen to its primary synthesis on the ribosomes. They ar sometimes referred to as posttranslational isozyme and vitro during the serago within the cells and/o
rozyme patterns in youna and old red CELLS AND IN OTHER TISSUES
An example of secondary isozyme formation in vivo is provided by the enzyme human nucleosid phosphorylase (NP) (Edwards, Hopkinson, and Haris, 1971, Turner, Fisher, and Harris, 1971). When red cell lysates are examined electrophoret ically for nucleoside phosphorylase (NP) a series of of course, a relativelymes are seen. Red cells have of course, a relatively long life span (>100 days) at an early stage. A sample of red cells te synthesis normal individual therefore consists $\begin{gathered}\text { cells }\end{gathered}$ wide range of different ages. If one takes advanta of their different specific gravities and separates the cells by density gradient centrifugation, it is possibl to examine and compare the isozyme patterns in red cells of different ages. When this is done it is found that the faster moving, ie, more anodal, NP isozymes are relatively more prominent in the older cell fraction, and the slower moving, ie, less anodal NP isozymes are relatively more prominent in the younger cell fraction and the least anodal isozyme is the most prominent. A similar effect is observed and from individuals with chronic hinemolytic anaemia, eg thalassaemia, are compared. In the
reticulocyte-rich specimens from the haemolytic cases, the slower moving isozymes are relatively much more active than in normal individuals, and the faster moving isozymes are relatively weaker. the relative intensities of the verrelation betwee and the 'age' of the red cell. In other tissues such as and the age of the red cell. in other tissues such as seen except that the slower moving zones predominate, the slowest are the most active and the others diminish in activity with increasing electro doubt vary in aty. The cells in such trast to the peripheral red cell, nucleated and presumably capable of fairly continuous enzyme synthesis. In rapidly dividing cells, such as tissue culture fibroblasts and lymphoid cells in culture, the slowe NP isozyme accounts for virtually all the enzym activity, though the next one or two isozymes in the series may also be observed as minor zones. Thes results suggest that the slowest moving, ie, lea anodal, isozyme is the primary form of nucleosid phosphorylase synthesized in an cells and that th multiple series of discrete, more rapidly moving isozymes, observed in varying proportions enerated in a stepwise manner from the primary form and from one another as the enzyme protei ages in vivo.
Electrophoretic studies of the isozyme pattern of several other enzymes, for example, phospho glucomutase (Monn, 1969a), pyruvate kinase (Paglia and Valentine, 1970), and pyrophosphatase (Fisher Turner, Dorkin, and Harris, 1974), in young and old red cells have shown that secondary isozyme for mation, similar to that observed in the case of nucleoside phosphorylase, is a very common phe nomenon. In most cases it seems that the leas anodal component of a set of isozymes is the subsequently derived from this by some intracellular stepwise process.
As yet little is known in most cases about th nature of the structural alterations that may be nvolved in this generation of secondary isozymes. One suggestion from work on rabbit muscle aldolas (Midelfort and Mehler, 1972) and human carbonic anhydrase (Funakoshi and Deutsch, 1969) is tha the loss of amide groups from asparagine or gluta mine residues in the enzyme protein could lead to th generation of multiple secondary isozymes. Anothe possible explanation coming, for example, from Allan and Willias 1971; Karn, Shulkin Merritt, and Newell 1973), is that the addition of carbo hydrate side chains to reactive residues on the
primary isozyme may lead to secondary forms. Varying degrees of acetylation, methylation, sialation, or phosphorylation of an enzyme protein may also be envisaged as causes of secondary isozyme formation, indeed there is evidence from several be reversible and physiologically reactions may regulating metabolism. Cleavage of a polypeptide chain by a proteolytic enzyme is another source of secondary isozymes; for example, human pancreatic carboxypeptidase, A_{1}, appears to be the primary isozyme produced by activation of procarboxy peptidase A by trypsin. A second isozyme, carboxy peptidase A_{2}, is produced subin on the A_{1} isozyme (Hadorn and Silberberg, 1968).

CONFORMATIONALISOZYMES
Another possibility is that secondary isozymes do not differ from each other in their chemical structure but differ in their three-dimensional arrangement. Such conformational isozymes ('conformers') would be expected to show similar enzymatic activity but because of the particular spatial arrangement tion would differ in other propertie such phoretic or chromatographic behaviour. They should also be interconvertible by appropriat chemical treatment. So far no completely certain examples of conformational isozymes have been identified but there are some examples of multiple isozymes (eg, Kaplan, 1968; Fisher and Harris, 1971a and b) where the idea of conformers strongly supported by the experimental evidence.

SULPHYDRYLREACTION
Secondary isozymes can also be generated by the reaction of the sulphydryl (-SH) group of cysteine residues in an enzyme protein with other substance been demonstrated in vitro for red cell acid phos phatase (Bottini and Modiano, 1964; Fisher and Harris, 1969), adenosine deaminase (Spencer Hopkinson, and Harris, 1968; Hopkinson an Harris, 1969a), and peptidases C and D (Lewis and Harris, 1967, 1969), and appear to be the cause in these cases for the change in isozyme patter observed in haemolysates on storage. The occurrence of such changes may be confusing in genetical studies unless their cause is recognized
A particularly striking example of an alteration in isozyme patterns due to sulphydryl reactions is When freshly prepared haemolysates are examined by electrophoresis the majority of examples show a single main izozyme and one or two weakly active
more anodal isozymes. If the red cell lysates are stored for a few days in a refrigerator and the re-examined the isozyme pattern is found to be altered. The slowest moving zone becomes progressively weaker while the other, previously minor zones, increase in intensity. After about 10 days storage the slowest zone is almost undetectable whereas the intermediate zone has about the same intensity as originally shown by the slowest zone Also an extra, even more anodal, isozyme become visible. Thus the final appearance of the isozyme original pattern except that each of the zone appears to migrate more rapidly towards the anode. When haemolysates are stored it is known that oxidized glutathione accumulates at the expens of reduced glutathione, and this change appears to be responsible for the generation of secondary change in the ADA isozyme patterns. The deliberate addition of oxidized glutathione to freshly lysed red cells produces the same change in the ADA isozyme pattern, while the addition of mercapto ethanol or reduced glutathione reverses both the effects of storage and the effects of added oxidized glutathione. The oxidized glutathione evidenty oform a mixed disulphide. Thus each isozym acquires an extra negative charge and hence greater anodal electrophoretic mobility Simila effects can be demonstrated by the use of othe thiol reagents such as dithiothreitol, iodoacetic acid odoacetamide, maleate, n-ethylmaleimide, cyste amine, and p-chloromercuribenzoate. With each reagent a reaction product is formed with character istic electrophoretic mobility which could be predicted from the known properties of the particula reagent. In general, the results obtained were entirely compatible with the idea that each ADA sozyme contains free sulphydryl groups
The methods used to investigate the ADA iso investigation of other isozymes. The application of particular interest has been the use of 'thiol' reagents for the detection and characterization of inherited variants due to mutations which have resulted in the substitution of a cysteine residue for some othe residue at an exposed part of an enzyme protein Two probable examples of this have been identified one in a particular rare peptidase variant (Sinha and Hopkinson, 1969) and the other in a rare phospho hexose isomerase variant (Hopkinson, 1970).

Isozymes due to Multiple Alleles

The occurrence of more than one allele at a particula gene locus is another cause of isozymes. Varian
alleles may be relatively rare in the general popu lation or they may be quite common and give rise to genetic polymorphism. Each allele codes for structurally distinct polypeptide chain; thus the primary structure of the enzyme protein may vary from individual to individual according to th particular alleles which are carried. If an individua is heterozygous for two such alleles, eg, \mathbf{A}^{1} and \mathbf{A}^{2} which determine α^{1} and α^{2} polypeptides respectively, molecular form of that enzyme is likely to occur though the precise number of isozymes observed in such heterozygotes will depend on the basic subunit structure of the enzyme

Subunit structure of enzymes
If the enzyme is a monomer, there will be two isozymes in the heterozygote, which will correspond to the separate α^{1} and α^{2} polypeptides. If it is wo protein there will be three isozymes two of these will have subunit structures $\alpha^{1} \alpha$ and $\alpha^{2} \alpha^{2}$ and will correspond with the forms
seen separately in the respective seen separately in the respective homozygotes both types of subunit It will have intermediate electrophoretic mobility and will be peculiar to the heterozygotes If the enzyme is a trimer four isozymes will occur in heterozygotes: the two outer isozymes, $\alpha_{\frac{1}{3}}$ and α_{3}^{2}, will represent the homozygous products of the two separate alleles and the two middle isozymes will be hybrids, $\alpha_{2}^{1} \alpha_{2}$ and $\alpha_{1}^{1} \alpha_{2}^{2}$, containing both types of subunit but in different combinations. If the enzyme is a tetramer, then five isozymes will occur in the heterozygotes $\left(\alpha_{1}^{1}, \alpha_{3}^{1} \alpha_{1}^{2}, \alpha_{2}^{1} \alpha_{2}^{2}, \alpha_{1}^{1} \alpha_{3}^{2}, \alpha_{4}^{2}\right)$ and three of thes will be hybrids. Examples of all these types of iso zyme patterns in heterozygotes have been identified (Hopkinson and Harris, 1971) although in practice the patterns may be complicated by the occurrence of secondary isozymes of the kind discussed in the previous section
It is interesting to note that the present evidence suggests that most enzymes are made up of more than one polypeptide subunit. A recent tabulatio (Harris, H., personal communication) of the data on some 50 different human gene loci which determine enzyme structure indicates that only about a quarter ($\sim 26 \%$) of our enzymes are monomers ($\sim 20^{\circ}$) Only ($\sim 0 \%$. Ony one ex a (Edwards et al, 1971). Thus trimers appear to be rather rare and monomers appear to be somewh less frequent than one might have supposed.
aSymmetrical isozyme patterns
If the two different polypeptides coded by the pair of alleles in a heterozygote have similar kinetic properties and stabilities and are synthesized at the same rates, then the electrophoretic patterns of the symmetrical in appearance in the case of a mono meric enzyme the activity ratios will be $1: 1$ for the two isozymes, in a dimer the activity ratios will be $1: 2: 1$ for the three isozymes, in a trimer 1:3:3:1 and for tetramers $1: 4: 6: 4: 1$. Many of the isozym wide range of different enzymes do show such symmetry. However in some heterozygotes distinctly asymmetrical pattern is observed which suggests that in these cases one allele is contributin significantly less than the other to the total enzyme activity.

In most cases the functional significance of thes low activity alleles is obscure but there are som examples where they are important cinically mutant alleles which produce gross enzyme de ficiency with pathological results. A clear instance is found in work on the isozymes of phosphohexose iso merase (Detter, Ways, Giblett, Baughan, Hopkinson, variants of phosphoherose is merase (PHI) occic and family studies show that most individuals wit variant phenotype, eg PHI 2-1, 3-1, 4-1, etc, heterozygous for a common allele $P H I^{1}$ and for one or other of a series of rare alleles $\mathrm{PHI}^{2,3,4} \mathrm{etc}$. (In this discussion the phenotype is denoted PHI and the genotype is italicized, PHI.) Most peopl are homozygous for the common PHI 1 allele an exhbit the PHI I pathe. The enzyme is a dime and in most of the heterozygotes a symmetrical triple banded isozyme pattern is observed. However, some heterozygotes, eg, PHI 9-1 and PHI 10-1, show asymmetrical patterns, suggesting that th contribution of these variant alleles to the total common PHI^{1} allele. Indeed from the ppearanc of these isozyme patterns alone it would appear the individuals homozygous for PHI^{9} or PHI^{10} o compound heterozygotes for these two alleles would exhibit a severe deficiency of PHI activity.
Examination of the PHI isozyme patterns in red cells from several different patients with chronic haemolytic anaemia associated with severe de ficiency of red cell PHI activity has shown that this is a valid conclusion and also revealed severa interesting examples of genetic heterogeneity due to multiple allelism of the sort discussed in this sym Valentine Pagli, Ways, Simons, and DeMarsh, 968. Detter Ways, Giblett Baughan, Hopkinson,

Povey, and Harris, 1968) was found to be heterozygous for the two electrophoretically distinct rare alleles $P H^{9}$ and $P H I^{10}$; the mother was phenotype PHI 9-1 and the father was PHI 10-1. In another family (Tariverdian et al, 1970) two anaemic children were found to be homozygous for the rare PHI^{9} allele, and both parents were of the rare third family (Paglia, Holland, Baughan, and Valentine, 1969) exhibited a single weak isozyme just slightly less cathodal than the usual $\boldsymbol{P H I}^{1}$ isozyme and were presumably homozygous for patterns in the presumably heterozygous parents were not distinguishably different electrophoretically from the usual PHI 1 pattern. This could be due to the technical difficulties of separating isozymes of very similar electrophoretic mobilities or might be due to the variant isozymes being more labile than the PHI isozyme and thus undetectable in these heterozygotes. More recently several new cases of PHI deficiency have been reported (eg, Blume, Hryniuk, Powers, Trinidad, West, and Beutler, 1972; Nakashima, Miwa, Oda, Oda, Matsumoto, Fukumoto, and Yamada, 1973) and the isozyme studies

Isozymes due to Multiple Gene Loci

Some enzymes are determined by two or more separate structural gene loci, each of which determines the amino acid sequence of a distinctive polypeptide chain. In such cases multiple isozymes are generated and the resulting heterogeneity usually more complex than if just one locus is concerned. The polypeptide products of the different loci may separately form the various members of a set of isozymes or the different polypeptides may combine together, perhaps in different proportions, Also there may be marked differences between the cells of different tissues in the quantities of the polypeptide products of the different loci. The relative amounts of isozymes determined by different gene loci may also show marked changes during the course of development, particularly during the fetal and neonatal periods.
Analysis and elucidation of such complex isozyme systems usually requires a combination of biochemical and genetic techniques although in some cases, for example, where the tissue distribution of the enzyme is so limis ively on biochemical data. A useful practical point in these circumstances, however, is that the polypeptide
products of alleles at the same locus are likely to differ by only single amino acid substitutions whereas polypeptides coded at separate gene loci are likely to differ at quite a number of residues along the chain. Thus, in general, isozymes coded at the same locus tend to resemble one another in their biochemical and physical properties, whereas isozymes coded at separate loci tend to differ considerably in their properties.
Recent biochemical studies on the isozymes of human phosphoglucomutase (PGM) provide an approach can complement genetic methods of isozyme analysis. From conventional pedigree studies and population studies it was concluded that three distinct structural gene loci are concerned with the determination of human PGM and these loci were designated $P G M_{1}, P G M_{2}$, and $P G M_{3}$ (Hopkinson and Harris, 1969b). A series of electrophoretic variants attributable to the occurrence of multiple alleles at each of the three loci were identified, each allele resulting in the appearance of an altered set of isozymes characteristic of the particular locus. Secondary isozymes were also recognized suggesting that PGM is a mozomer
Studies of various biochemical characteristicsheat stability, molecular size, substrate specificity, and kinetic properties-showed that the PGM sozymes determined by alleles at any one locus were similar to each other but very different when compared with isozymes determined at the othe PGM loci: for example, the PGM_{2} locus isozymes are much more stable than the PGM_{1} locus isozymes which in turn are more stable than the PGM_{3} sozymes (McAlpine, Hopkinson, and Harris, 1970a). The PGM $_{2}$ isozymes are $15-20 \%$ larger than Santachiara and Modiano, 1969. McAlpine 1969b; 1970b). The PGM_{2} isozymes are very active phos phoribomutases whereas PGM_{1} and PGM_{3} are very weak phosphoribomutases (Quick, Fisher, and Harris, 1972, 1974). Thus the biochemical data provide not only confirmation of the genetic hypo thesis but also interesting new ideas on the possible unctional significance of the PGM isozymes determined at different gene loci.

Conclusions

It is evident from this brief discussion that the multiple isozymes of any one enzyme can be generated in several different ways.
Secondary isozymes are ubiquitous but probably genetic in genetic studies. In particular, it is essential to
distinguish variation in secondary isozyme formation from genetic variation. However, it should also be appreciated that secondary isozymes may occasiona be helpfur in detecting particular genetic aniants. This was alluded to in the discussion on reactive sulphydryl groups in isozymes.
The occurrence of multiple isozymes due to allelic variation is also well established. A very large number of different enzyme loci have now been screened by electrophoresis and in many cases several distinct isozymes of the same enzyme horetically found (Harris and Hopkinson 1972. Harris Hopkinson, and Robson, 1974). A picture of extraordinary diversity in enzyme synthesis is emerging both in normal healthy people and in patients with pathological disorders. The functional significance of this individual diversity in enzyme constitution has been discussed earlier in this symposium by Professor Harris.
Multiple loci leading to the occurrence of multiple isozymes also appear to be quite common. Of about 60 complex isozyme systems analysed so far in human tissues, about a quarter are products of give rise to separate sets of isozymes or the poly peptides may combine to give hybrid isozymes, although it should be noted that the failure to detect hybrid isozymes by electrophoresis does no preclude their existence in vivo.
Quite often the tissue distribution of isozymes attributable to different loci varies considerably and this presumably reflects different metabolic roles of these multiple forms of the same enzyme activity, though in certain cases it may reflect differences in the stability characteristics. Clearly it would be of interest to determine exactly how isozymes determined by different loci differ in their unctional activities and also what processes are zymes which may be observed
The occurrence of multiple gene loci determining the structures of a set of isozymes has a special linical significance since mutant alleles at one locus may result in a marked or complete loss of activity in some isozymes but not in others. This may result in a clinical disorder, the characteristic atures of which will depend on the normal distri-都 the degree of the particular isozymes affected and nzymes pyru enzyme deficiency produced. The enzymes pyruvate kinase and aldolase are interesting mined by more than one gene locus and in each case pathological disorder has been recognized in which the products of just one locus and not the
others have been affected by the presence of defective mutant alleles.

References

Baughan, M. A., Valentine, W. N., Paglia, D. E., Ways, P. O., Simons,
E. R., and DeMarsh, Q.
. (1968). Hereditary hemolytic

deficiency-a new enzyme defect of human erythrocyts

Blume, K Beuter, E. E. (1972). Characterization of two new variants
Bry llucose-phosphate-isomerareserization of tefieiency with hereveditiary non-
spherocytic hemolytic anemia. f Lab. clin. Med., 79 , 942 -949.
Bottini, E , and Modiano, G. (1964). Effect of oxidised glutathione human red cell acid
Commun, 17, $260-264$.
Detter, J. D. A., Povey. S.., and Holt, E. R... Baughan, M. A., Hopkinson, 1 (1968). Inherited variations
in human phosphohexose isomerase. Ann. hum. Geret. in human
$329-$-338.
Edwards, Y. H., Hopkinson, D. A add Harris, H. (1971). ards, Y. H., Hopkinson, D. A., and Harris, H. (1971). Inherited
variants of human nucleoside phosphorylase. Ann. hum
Genet. $34,395-408$. Genet., $34,395-408$.
R. A., and Harris,
r, R. A., and Harris, H. (1969). Studies on the purification and
properties of the genetic variants of red cell acid phospho-
hydrose

Fisher, R. A., and Harris, H. (1971a). Studies on the separate isozymes
of red cell acid phosphatase phenoypes A and B. I. Chro matographic
$34,431-438$.
Fisher, R. A., and Harris, H. (1971b). Studies on the separate isozym of red cell acid phosphatase phenotypes A and B. II . Compari.
son of kinetics and stabilities of the isozymes. Ann. hum Genet., 34, 439-447.
r. R. A.,. Turner, B. M., Dorkin, H. L., and Harris, H. (1974)
Studies on human erythrocyte inorganic pyrophosphatas Sunies on human erythrocyte inorganic pyrophosphatase. Genet, $37,341-353$.
Al

Funakoshi, S., and Deutsch, H. E. E. (1969). Human carbonic anhy and of 244, ${ }^{2438}$. and Silb of., human pancreatic carboxypeptidase A. Biochim. biophy | Acta |
| :--- |
| s, H. | Acta (Amst.), 151, 702-705.

H. (1962).
Harris, Roy
Harris, H. oy. Soc. Lond. B., 174, 1-31.
H., and Hozes. (Review lecture). Proc.
 polymorphisms. Ann. hum. Genet., 36, 9 -2
s. H., Hopkinson, D. A., and Robson, E. B.
Harris, H., Hopkinson, D.A.,., and Robson, E. E. B. (1974). The incidence
of rare alleles determining electrophoretic variants: data on
43

Hopkinson, D. A. (1970). The investigation of reactive sulphydryls
in enymes and their variants by starch-gel electrophoresis
stud studies on the human phospho-
PHI 5-1. Ann. um. Genet., 34,79 .84.
 sulphydryls in enyymes and their variants by starch gel electro
phoresis: studies on red cell adenosine deaminase. Ann. hum Cenet, 33, 81-87.
Hopkinson, D. A.,. and Harris, H. (1969b). Red cell acid phosphatase
phosphoglucomutas Phosphoglucomutase and adenylate kinase. In Biochemical
Methods in Red Cell Genetics, edited by J. J. Yunis, pp. 337 - 374 Academic Press, New York and London.

