Design and Analysis of Algorithms

Introduction to Algorithms

Content

- Analysis of Algorithms
- Time Efficiency
- Space Efficiency
- Theoretical Analysis of Time Efficiency
- Empirical/Experimental Analysis of Time Efficiency
- Algorithms Design Strategies/Techniques

Analysis of Algorithm

Solving Problem in Computer Science, Before writing Program, we can write a duformal Description of Rolution Called Algorithm. - Algo is in Informal due to Problem St is like to communicate before implementation. [Program st in C] For writing q Prog van, we need Algo. It you a problem, You may have many solution. Problem & Program (Algo) - a. Ac no no Ay -- An - Every Algo can be suplamented in form of the Brogram. - we have to neet to know which Algo is good in terms of Time 4 memory (space): Time I manory take leve considerat as good . Derign -> how can we Derign Algo for firen Problem Andysis - I how to Analyze these Also in respect of Time & of Algosithm

Analysis of Algorithm

Issues:
Correctness
Time Efficiency
Space Efficiency
Optimality

Approaches:
Theoretical Analysis
Empirical Analysis

Time Efficiency

- Time T (P) taken by a program P is the sum of the Compile time and run (or execution) time.
- Program once compiled can be run several times.
- Compile time does not depend on the instance characteristics.

Space Efficiency

- Space Complexity is the amount of memory an algorithm needs to run to completion.
- Space needed by an algorithm can be sum of following components:
 - A fixed part that is independent of the characteristics of the input & outputs. This part typically includes the instruction space, space for variables, constants etc.
 - A variable part consists of the space needed by component variables whose size is dependent on the particular problem instance being solved.

Theoretical Analysis of Time Efficiency

Time efficiency is analyzed by determining the number of repetitions of the *basic operation* as a function of *input size*.

Basic operation: the operation that contributes the most

towards the running time of the algorithm.

running time execution time for basic operation or cost Number of times basic operation is executed

Empirical/Experimental Analysis of Time Efficiency

Select a specific (typical) sample of inputs

Use physical unit of time (e.g., milliseconds) or Count actual number of basic operation's executions

Analyze the empirical data

Algorithm Design Strategies / Techniques

Algorithm Design Strategies / Techniques

- Brute force
- Divide and conquer
- Decrease and conquer
- Transform and conquer
- Greedy approach
- Dynamic programming
- Backtracking
- Branch-and-Bound
- Space and time tradeoffs