
CONTENTS

Problem Solving

 Algorithm Design

 Algorithm Analysis

- Time Complexity

- Space Complexity

 Experimental Approach

 Theoretical Approach

 Algorithm Example

Problem Solving: Main Steps

1. Problem definition

2. Algorithm design / Algorithm

Specification

3. Algorithm analysis / Performance

4. Implementation

5. Testing

6. Maintenance

1. Problem Definition

 What is the task to be accomplished?

◦ Calculate the average of the grades for a given

student

◦ Understand the talks given out by politicians

and translate them in Chinese

 What are the time / space / speed /

performance requirements ?

2. Algorithm Design / Specifications

 Algorithm: Finite set of instructions that, if
followed, accomplishes a particular task.

 Criteria to follow:

◦ Input: Zero or more quantities (externally
produced)

◦ Output: One or more quantities

◦ Definiteness: Clarity, precision of each
instruction

◦ Finiteness: The algorithm has to stop after a
finite (may be very large) number of steps

◦ Effectiveness: Each instruction has to be basic
enough and feasible

Algorithm Design Goals

 The two basic design goals that one should

strive for in a program are:

1.Try to save Time

2.Try to save Space

 A program that runs faster is a better program,

so saving time is an obvious goal. Like wise,

 a program that saves space over a competing program is

considered desirable.

4,5,6: Implementation, Testing,

Maintenance
 Implementation

◦ Decide on the programming language to use

 C, C++, Lisp, Java, Perl, Prolog, assembly, etc. ,
etc.

◦ Write clean, well documented code

 Test, test, test….

 Integrate feedback from users, fix bugs, ensure
compatibility across different versions 
Maintenance

3. Algorithm Analysis/Performance

1. Time complexity

◦ How much time does it take to run the

algorithm

2. Space complexity

◦ How much space is required

1. Time Complexity

 Often more important than space complexity

◦ space available (for computer programs!) tends
to be larger and larger

◦ time is still a problem for all of us

 3-4GHz processors on the market

◦ still …

◦ researchers estimate that the computation of
various transformations for 1 single DNA chain
for one single protein on 1 TerraHZ computer
would take about 1 year to run to completion

 Algorithms running time is an important issue

Running Time

 Problem: prefix averages

◦ Given an array X

◦ Compute the array A such that A[i] is the average
of elements X[0] … X[i], for i=0..n-1

 Sol 1

◦ At each step i, compute the element X[i] by
traversing the array A and determining the sum of
its elements, respectively the average

 Sol 2

◦ At each step i update a sum of the elements in
the array A

◦ Compute the element X[i] as sum/I

Big question: Which solution to choose??

Running time

Input

1 ms

2 ms

3 ms

4 ms

5 ms

A B C D E F G

worst-case

best-case

}average-case?

Suppose the program includes an if-then statement that may

execute or not:  variable running time

Typically Algorithms are measured by their worst case

Space Complexity:

 Space complexity = The amount of memory required by

an algorithm to run to completion

 The space need by a program has the following

components:

 Instruction space: Instruction space is the space

needed to store the compiled version of the program

instructions.

 Data space: Data space is the space needed to store

all constant and variable values. Data space has two

components:

-Space needed by constants and simple variables in

program.

2. Space Complexity

-Space needed by dynamically allocated objects

such as arrays and class instances.

 Environment stack space: The environment

stack is used to save information needed to resume

execution of partially completed functions.

 Some algorithms may be more efficient if data

completely loaded into memory

◦ Need to look also at system limitations

◦ E.g. Classify 2GB of text in various categories

[politics, tourism, sport, natural disasters, etc.]

– can I afford to load the entire collection?

Space Complexity (cont’d)

1. Fixed part: The size required to store certain

data/variables, that is independent of the size of

the problem:

- e.g. name of the data collection

- same size for classifying 2GB or 1MB of texts

2. Variable part: Space needed by variables, whose

size is dependent on the size of the problem:

- e.g. actual text

- load 2GB of text VS. load 1MB of text

Space Complexity (cont’d)

 S(P) = c + S(instance characteristics)

◦ c = constant

 Example:

void float sum (float* a, int n)

{

float s = 0;

for(int i = 0; i<n; i++) {

s+ = a[i];

}

return s;

}

Space?

one word for n, one for a [passed by reference!], one
for i  constant space!

Experimental Approach

 Write a program that implements the
algorithm

 Run the program with data sets of varying
size.

 Determine the actual running time

 Problems?

Experimental Approach

 It is necessary to implement and test the

algorithm in order to determine its running

time.

 Experiments can be done only on a limited

set of inputs, and may not be indicative of

the running time for other inputs.

 The same hardware and software should be

used in order to compare two algorithms. –

condition very hard to achieve!

Use a Theoretical/Analytical

Approach
 Based on high-level description of the

algorithms, rather than language

dependent implementations

 Makes possible an evaluation of the

algorithms that is independent of the

hardware and software environments

 Generality

Algorithms (example)

2

Describe an algorithm for finding the maximum value in
a finite sequence of integers.

Solution:

 Set the temporary maximum equal to the first integer
in the sequence.

 Compare the next integer in the sequence to the
temporary maximum, and if it is larger than the
temporary maximum, set the temporary maximum
equal to this integer.

 Repeat the previous step if there are more integers in
the sequence

 Stop when there are no integers left in the sequence.
 The temporary maximum at this point is the largest

integer in the sequence.

Algorithms (example)

3

Describe an algorithm for finding the maximum
value in a finite sequence of integers.

Solution:

Procedure max(a1, a2, a3, …, an: integers)

max = a1

for i=2 to n

if max < ai

then max = ai

output max

Algorithm Example

 Example: Describe an algorithm for finding the
maximum value in a finite sequence of integers.

(or)

find the maximum element of an array.

1. Algorithm arrayMax(A, n):

Input: An array A storing n integers.

Output: The maximum element in A.

2. currentMax A[0]

3. for i 1 to n -1 do

4. if currentMax < A[i]

5. then currentMax A[i]

6. return currentMax

Low Level Algorithm Analysis

 Based on primitive operations (low-level computations
independent from the programming language)

 E.g.:

◦ Make an addition = 1 operation

◦ Calling a method or returning from a method = 1
operation

◦ Index in an array = 1 operation

◦ Comparison = 1 operation etc.

 Method: Inspect the pseudo-code and count the
number of primitive operations executed by the
algorithm

