
CONTENTS

Problem Solving

 Algorithm Design

 Algorithm Analysis

- Time Complexity

- Space Complexity

 Experimental Approach

 Theoretical Approach

 Algorithm Example

Problem Solving: Main Steps

1. Problem definition

2. Algorithm design / Algorithm

Specification

3. Algorithm analysis / Performance

4. Implementation

5. Testing

6. Maintenance

1. Problem Definition

 What is the task to be accomplished?

◦ Calculate the average of the grades for a given

student

◦ Understand the talks given out by politicians

and translate them in Chinese

 What are the time / space / speed /

performance requirements ?

2. Algorithm Design / Specifications

 Algorithm: Finite set of instructions that, if
followed, accomplishes a particular task.

 Criteria to follow:

◦ Input: Zero or more quantities (externally
produced)

◦ Output: One or more quantities

◦ Definiteness: Clarity, precision of each
instruction

◦ Finiteness: The algorithm has to stop after a
finite (may be very large) number of steps

◦ Effectiveness: Each instruction has to be basic
enough and feasible

Algorithm Design Goals

 The two basic design goals that one should

strive for in a program are:

1.Try to save Time

2.Try to save Space

 A program that runs faster is a better program,

so saving time is an obvious goal. Like wise,

 a program that saves space over a competing program is

considered desirable.

4,5,6: Implementation, Testing,

Maintenance
 Implementation

◦ Decide on the programming language to use

 C, C++, Lisp, Java, Perl, Prolog, assembly, etc. ,
etc.

◦ Write clean, well documented code

 Test, test, test….

 Integrate feedback from users, fix bugs, ensure
compatibility across different versions
Maintenance

3. Algorithm Analysis/Performance

1. Time complexity

◦ How much time does it take to run the

algorithm

2. Space complexity

◦ How much space is required

1. Time Complexity

 Often more important than space complexity

◦ space available (for computer programs!) tends
to be larger and larger

◦ time is still a problem for all of us

 3-4GHz processors on the market

◦ still …

◦ researchers estimate that the computation of
various transformations for 1 single DNA chain
for one single protein on 1 TerraHZ computer
would take about 1 year to run to completion

 Algorithms running time is an important issue

Running Time

 Problem: prefix averages

◦ Given an array X

◦ Compute the array A such that A[i] is the average
of elements X[0] … X[i], for i=0..n-1

 Sol 1

◦ At each step i, compute the element X[i] by
traversing the array A and determining the sum of
its elements, respectively the average

 Sol 2

◦ At each step i update a sum of the elements in
the array A

◦ Compute the element X[i] as sum/I

Big question: Which solution to choose??

Running time

Input

1 ms

2 ms

3 ms

4 ms

5 ms

A B C D E F G

worst-case

best-case

}average-case?

Suppose the program includes an if-then statement that may

execute or not: variable running time

Typically Algorithms are measured by their worst case

Space Complexity:

 Space complexity = The amount of memory required by

an algorithm to run to completion

 The space need by a program has the following

components:

 Instruction space: Instruction space is the space

needed to store the compiled version of the program

instructions.

 Data space: Data space is the space needed to store

all constant and variable values. Data space has two

components:

-Space needed by constants and simple variables in

program.

2. Space Complexity

-Space needed by dynamically allocated objects

such as arrays and class instances.

 Environment stack space: The environment

stack is used to save information needed to resume

execution of partially completed functions.

 Some algorithms may be more efficient if data

completely loaded into memory

◦ Need to look also at system limitations

◦ E.g. Classify 2GB of text in various categories

[politics, tourism, sport, natural disasters, etc.]

– can I afford to load the entire collection?

Space Complexity (cont’d)

1. Fixed part: The size required to store certain

data/variables, that is independent of the size of

the problem:

- e.g. name of the data collection

- same size for classifying 2GB or 1MB of texts

2. Variable part: Space needed by variables, whose

size is dependent on the size of the problem:

- e.g. actual text

- load 2GB of text VS. load 1MB of text

Space Complexity (cont’d)

 S(P) = c + S(instance characteristics)

◦ c = constant

 Example:

void float sum (float* a, int n)

{

float s = 0;

for(int i = 0; i<n; i++) {

s+ = a[i];

}

return s;

}

Space?

one word for n, one for a [passed by reference!], one
for i constant space!

Experimental Approach

 Write a program that implements the
algorithm

 Run the program with data sets of varying
size.

 Determine the actual running time

 Problems?

Experimental Approach

 It is necessary to implement and test the

algorithm in order to determine its running

time.

 Experiments can be done only on a limited

set of inputs, and may not be indicative of

the running time for other inputs.

 The same hardware and software should be

used in order to compare two algorithms. –

condition very hard to achieve!

Use a Theoretical/Analytical

Approach
 Based on high-level description of the

algorithms, rather than language

dependent implementations

 Makes possible an evaluation of the

algorithms that is independent of the

hardware and software environments

 Generality

Algorithms (example)

2

Describe an algorithm for finding the maximum value in
a finite sequence of integers.

Solution:

 Set the temporary maximum equal to the first integer
in the sequence.

 Compare the next integer in the sequence to the
temporary maximum, and if it is larger than the
temporary maximum, set the temporary maximum
equal to this integer.

 Repeat the previous step if there are more integers in
the sequence

 Stop when there are no integers left in the sequence.
 The temporary maximum at this point is the largest

integer in the sequence.

Algorithms (example)

3

Describe an algorithm for finding the maximum
value in a finite sequence of integers.

Solution:

Procedure max(a1, a2, a3, …, an: integers)

max = a1

for i=2 to n

if max < ai

then max = ai

output max

Algorithm Example

 Example: Describe an algorithm for finding the
maximum value in a finite sequence of integers.

(or)

find the maximum element of an array.

1. Algorithm arrayMax(A, n):

Input: An array A storing n integers.

Output: The maximum element in A.

2. currentMax A[0]

3. for i 1 to n -1 do

4. if currentMax < A[i]

5. then currentMax A[i]

6. return currentMax

Low Level Algorithm Analysis

 Based on primitive operations (low-level computations
independent from the programming language)

 E.g.:

◦ Make an addition = 1 operation

◦ Calling a method or returning from a method = 1
operation

◦ Index in an array = 1 operation

◦ Comparison = 1 operation etc.

 Method: Inspect the pseudo-code and count the
number of primitive operations executed by the
algorithm

