CONTENTS

Problem Solving
® Algorithm Design
m Algorithm Analysis
- Time Complexity
- Space Complexity
m Experimental Approach

m Theoretical Approach
m Algorithm Example

Problem Solving: Main Steps

|. Problem definition

2. Algorithm design / Algorithm
Specification

Algorithm analysis / Performance
Implementation

Testing

o U kW

Maintenance

|. Problem Definition

* What is the task to be accomplished!?

o Calculate the average of the grades for a given
student

> Understand the talks given out by politicians
and translate them in Chinese

* What are the time / space / speed /
performance requirements !

2.Algorithm Design / Specifications

o Algorithm: Finite set of instructions that, if
followed, accomplishes a particular task.

e Criteria to follow:

° Input: Zero or more quantities (externally
produced)

> Qutput: One or more quantities

o Definiteness: Clarity, precision of each
Instruction

° Finiteness: The algorithm has to stop after a
finite (may be very large) number of steps

o Effectiveness: Each instruction has to be basic
enough and feasible

Algorithm Design Goals

e The two basic design goals that one should
strive for in a program are:

|.Try to save Time

2.Try to save Space
e A program that runs faster is a better program,
so saving time is an obvious goal. Like wise,

e a program that saves space over a competing program is
considered desirable.

4,5,6: Implementation, Testing,
Maintenance

e Implementation

> Decide on the programming language to use

C, C++, Lisp, Java, Perl, Prolog, assembly, etc.,
etc.

> Write clean, well documented code

o Test, test, test....

¢ Integrate feedback from users, fix bugs, ensure
compatibility across different versions =
Maintenance

3. Algorithm Analysis/Performance

|. Time complexity

> How much time does it take to run the
algorithm

2. Space complexity

> How much space is required

|. Time Complexity

» Often more important than space complexity

> space available (for computer programs!) tends
to be larger and larger

o time is still a problem for all of us

e 3-4GHz processors on the market
o still ...

° researchers estimate that the computation of
various transformations for | single DNA chain
for one single protein on | TerraHZ computer
would take about | year to run to completion

e Algorithms running time is an important issue

Running Time

* Problem: prefix averages
> Given an array X

o Compute the array A such that A[i] is the average
of elements X[0] ... X]i], for i=0..n-1

e Sol |

> At each step i, compute the element X]i] by
traversing the array A and determining the sum of
its elements, respectively the average

e Sol 2

> At each step i update a sum of the elements in
the array A

o Compute the element X[i] as sum/I

Big question: Which solution to choose??

Running time

55 | poe o o = == s Worst-case

}ave rage-case?

best-case

F G

D E
Input

Suppose the program includes an if-then statement that may
execute or not: = variable running time

Typically Algorithms are measured by their WOI'ST case

Space Complexity:

e Space complexity = The amount of memory required by
an algorithm to run to completion

e The space need by a program has the following
components:

* Instruction space: Instruction space is the space
needed to store the compiled version of the program
instructions.

e Data space: Data space is the space needed to store
all constant and variable values. Data space has two
components:

-Space needed by constants and simple variables in
program.

2. Space Complexity

-Space needed by dynamically allocated objects
such as arrays and class instances.

* Environment stack space: The environment
stack is used to save information needed to resume
execution of partially completed functions.

* Some algorithms may be more efficient if data
completely loaded into memory

> Need to look also at system limitations

> E.g. Classify 2GB of text in various categories
[politics, tourism, sport, natural disasters, etc.]
— can | afford to load the entire collection?

Space Complexity (cont'd)

Fixed part: The size required to store certain
data/variables, that is independent of the size of
the problem:

- e.g. name of the data collection
- same size for classifying 2GB or |MB of texts

Variable part: Space needed by variables, whose
size is dependent on the size of the problem:

- e.g. actual text
- load 2GB of textVS. load IMB of text

Space Complexity (cont'd)

e S(P) = c + S(instance characteristics)
° € = constant
* Example:

void float sum (float* a, int n)
{
float s = 0;
for(int i = 0;i<n;i++) {
s+ = afi;
}

return s;

}
Space!?

one word for n, one for a [passed by reference!], one
for i = constant space!

Experimental Approach

* Write a program that implements the
algorithm

e Run the program with data sets of varying
size.

* Determine the actual running time

e Problems?

Experimental Approach

* |t is necessary to implement and test the
algorithm in order to determine its running
time.

e Experiments can be done only on a limited
set of inputs, and may not be indicative of
the running time for other inputs.

e The same hardware and software should be
used in order to compare two algorithms. —
condition very hard to achieve!

Use a Theoretical/Analytical
Approach

* Based on high-level description of the
algorithms, rather than language
dependent implementations

* Makes possible an evaluation of the
algorithms that is independent of the
hardware and software environments

-> Generality

Algorithms (example)

Describe an algorithm for finding the maximum value in
a finite sequence of integers.

Solution:

[1 Set the temporary maximum equal to the first integer
In the sequence.

[1 Compare the next integer in the sequence to the
temporary maximum, and if it is larger than the
temporary maximum, set the temporary maximum
equal to this integer.

[] Repeat the previous step if there are more integers in
the sequence
Stop when there are no integers left in the sequence.

The temporary maximum at this point is the largest
Integer In the sequence. 2

01 O

Algorithms (example)

Describe an algorithm for finding the maximum
value in a finite sequence of integers.

Solution:

Procedure max(ay, a,, as, ..., a,. Integers)
max = a,

fori=2ton

If max < a,

then max = a;

output max

Algorithm Example

e Example: Describe an algorithm for finding the
maximum value in a finite sequence of integers.

(or)

find the maximum element of an array.

l. Algorithm arrayMax(A, n):
Input: An array A storing n integers.
Output: The maximum element in A.

currentMax <— A[O]

for i<~ 1 ton -1 do

if currentMax < A[i]

then currentMax < A[i]

return currentMax

L EE NN

Low Level Algorithm Analysis

Based on primitive operations (low-level computations
independent from the programming language)

E.g.:
> Make an addition = | operation

> Calling a method or returning from a method = |
operation

° Index in an array = | operation
o Comparison = | operation etc.

Method: Inspect the pseudo-code and count the
number of primitive operations executed by the
algorithm

