
Analysis and Design of
Algorithms

Asymptotic
Notations

2

Contents

 Analysis of Algorithm- PROBLEM SIZE

 Analysis Of Algorithm: COMPLEXITY

 Complexity of Algorithms

 Asymptotic Notation

 Numerical Comparison of Different Algorithms

 Classification of Algorithms

Analysis of Algorithm- PROBLEM
SIZE

 The field of computer science, which studies
efficiency of algorithms, is known as analysis of
algorithms.

 Characterize an algorithm as a function of the
“problem size”.

 E.g.
– Input data = array  problem size is N (length of

array)

– Input data = matrix  problem size is N x M

3

4

Analysis Of Algorithm: COMPLEXITY

Some questions to answer:

 How fast can we solve a problem?

 There may be many algorithms for a given problem. Which
algorithm to use?

 What are the classical algorithm design techniques?

 Are there problems inherently difficult to solve?

 How good is the algorithm?

 Correctness

 Time efficiency

 Space efficiency

 Does there exist a better algorithm?

 Lower bounds

 Optimality

Complexity of Algorithms

 The complexity of an algorithm M

is the function f(n)

which gives the running time and/or storage space

requirement of the algorithm in terms of the size

‘n’ of the input data.

 Mostly, the storage space required by an algorithm

is simply a multiple of the data size ‘n’.

 Complexity shall refer to the running time of the

algorithm.

5

Complexity of Algorithms

 The function f(n), gives the running time of an

algorithm, depends not only on the size ‘n’ of the input

data but also on the particular data.

 The complexity function f(n) for certain cases are:

1. Best Case: The minimum possible value of f(n) is

called the best case.

2. Average Case : The expected value of f(n).

3. Worst Case: The maximum value of f(n) for any key

possible input.

6

7

Complexity of Algorithms

N
o

.
o

f
S

te
p

s

1 2 3 4 5 6 7 8

N

Worst Case

Complexity

Average Case

Complexity

Best Case

Complexity

Analyzing of an algorithm is concerned of

three cases:

Worst Case

Complexity

Best Case

Complexity

Average Case

Complexity

8

Complexity of Algorithms

 Worst case: Cworst(n) – maximum over inputs of
size n

 Best case: Cbest(n) – minimum over inputs of
size n

 Average case: Cavg(n) – “average” over inputs of
size n

 Number of times the basic operation will be executed on typical
input.

 NOT the average of worst and best case

 Expected number of basic operations considered as a random
variable under some assumption about the probability distribution
of all possible inputs. So,

avg = expected under uniform distribution.

Asymptotic Notation

 Need to abstract further

 Give an “idea” of how the algorithm performs

 n steps vs. n+5 steps

 n steps vs. n2 steps

Asymptotic analysis - terminology

 Special classes of algorithms:
logarithmic: O(log n)

linear: O(n)

quadratic: O(n2)

polynomial: O(nk), k ≥ 1

exponential: O(an), n > 1

 Polynomial vs. exponential ?

 Logarithmic vs. polynomial ?

Analyzing Algorithms

 Suppose ‘M’ is an algorithm, and

Suppose ‘n’ is the size of the input data.

Clearly the complexity f(n) of M increases as n

increases. It is usually the rate of increase of f(n) we

want to examine.

 This is usually done by comparing f(n) with some

standard functions.

 The most common computing times are:

O(1), O(log2 n), O(n), O(n.log2n), O(n2), O(n3), O(2n),

n! and nn.
11

Numerical Comparison of Different
Algorithms

n log n n log n n
2

n
3

2
n

1 0 0 1 1 2

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4096 65536

32 5 160 1024 32768 4294967296

Classification of Algorithms

 If ‘n’ is the number of data items to be processed

or degree of polynomial

or the size of the file to be sorted or searched

or the number of nodes in a graph etc.

 n=1 means

Next instructions of most programs are executed once or

at most only a few times. If all the instructions of a

program have this property, we say that its running time

is a constant.13

Classification of Algorithms

 Log n means

When the running time of a program is logarithmic,

the program gets slightly slower as n grows. This

running time commonly occurs in programs that

solve a big problem by transforming it into a smaller

problem, cutting the size by some constant fraction.

14

Classification of Algorithms

 n means

When the running time of a program is linear, it is

generally the case that a small amount of processing

is done on each input element. This is the optimal

situation for an algorithm that must process n inputs.

 n.log n means

This running time arises for algorithms that solve a

problem by breaking it up into smaller sub-problems,

solving then independently, and then combining the

solutions. When n doubles, the running time more

than doubles.15

Classification of Algorithms

 n2 means
When the running time of an algorithm is quadratic, it is practical

for use only on relatively small problems. Quadratic running times

typically arise in algorithms that process all pairs of data items

(perhaps in a double nested loop) whenever n doubles, the

running time increases four fold.

 n3 means
Similarly, an algorithm that process triples of data items (perhaps

in a triple–nested loop) has a cubic running time and is practical

for use only on small problems. Whenever n doubles, the running

time increases eight fold.

16

Classification of Algorithms

 2n means

Few algorithms with exponential running time

are likely to be appropriate for practical use,

such algorithms arise naturally as “brute–

force” solutions to problems. Whenever n

doubles, the running time squares.

17

