
Analysis and Design of
Algorithms

Asymptotic
Notations- Rate of
Growth

2

Contents

 Asymptotic Notation- Rate of Growth

 Ο-Notation (Big-Oh Notation)

 Θ-Notation (Theta Notation)

 Ω-Notation (Omega Notation)

Algorithms- Growth functions or
Rate of Growth

4

• The time required to solve a problem depends

on the number of steps it uses.

• Growth functions or Rate of Growth are used

to estimate the number of steps an

algorithm uses as its input grows.

Asymptotic Notation- Rate of
Growth

 Algorithms can be evaluated by a variety of criteria.

 Most often we shall be interested in the rate of growth

of the time or space required to solve larger and

larger instances of a problem.

 We will associate with the problem an integer, called

the size of the problem, which is a measure of the

quantity of input data.

 Goal: To simplify analysis by getting rid of unneeded

information (like “rounding” 1,000,001≈1,000,000)

4

Types of Asymptotic Notation

1. О(Big - Oh) – Notation

2. O (Little - Oh) - Notation

3. Ω(Big - Omega) – Notation

4. Ω (Little - Omega) - Notation

5. Θ(Theta) – Notation

1. О (Big - Oh) – Notation

6

О(Big – Oh) – Notation

 The “Big-Oh” Notation:

– Given functions f(n) and g(n),

– we say that f(n) is O(g(n))
– if and only if there are

1. positive constant c and

2. positive constant n0

such that f(n) ≤ c.g(n)
for n ≥ n0

7

8

О(Big – Oh) – Notation

 f(n) = О(g(n)) (read as “f of n is big-oh of g of n”)

f(n) ≤ c * g(n)

 iff there exist positive constants c and

 n0 such that for all n, n ≥ n0

Upper Bound

9

О(Big – Oh) -- Graphic Illustration

 f(n) = 2n+6

◦ Need to find a
function g(n) and a
const. c such as
f(n) < c.g(n)

 g(n) = n and c = 3

 f(n) is O(n)

 The order of f(n)
is n.

g(n) = n

c g(n) = 3n

n

f(n) = 2n + 6

Examples of Big – Oh

11

Example-1

12

13

Example-2

14

15

16

Example-3

17

18

19

20

“Relatives” of Big-Oh

 “Relatives” of the Big-Oh

– (f(n)): Big Omega – asymptotic lower bound

– (f(n)): Big Theta – asymptotic tight bound

 Big-Omega – think of it as the inverse of O(n)

– g(n) is (f(n)) if f(n) is O(g(n))

 Big-Theta – combine both Big-Oh and Big-Omega

– f(n) is (g(n)) if f(n) is O(g(n)) and g(n) is (f(n))

