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Algorithms- Growth functions or
Rate of Growth

 The time required to solve a problem depends
on the number of steps It uses.

 Growth functions or Rate of Growth are used
to estimate the number of steps an
algorithm uses as its input grows.



Asymptotic Notation- Rate of
Growth

e Algorithms can be evaluated by a variety of criteria.

e Most often we shall be interested in the rate of growth
of the time or space required to solve larger and
larger instances of a problem.

e We will associate with the problem an integer, called
the size of the problem, which is a measure of the
guantity of input data.

e Goal: To simplify analysis by getting rid of unneeded
iInformation (like “rounding” 1,000,001=1,000,000)



Types of Asymptotic Notation
« /00007

1. O(Big - Oh) — Notation

2. o (Little - Oh) - Notation

3. (Q(Big - Omega) — Notation
4. O (Little - Omega) - Notation
5. ©(Theta) — Notation



1. O (Big - Oh) — Notation
-

The Big-Oh notation defines an upper bound of an algorithm, it bounds a function only from above.

The Big-Oh Notation can be used in the following instances:
o For expressing the upper bound or the worst-case complexity of an algorithm.

o For expressing that “time complexity is never more than® or “at most" the given complexity
function.
For example, consider the case of Insertion Sort. It takes linear time in best case and quadratic time in
worst case. We can safely say that the time complexity of Insertion sort is O(n*2). Note that O(n*2)
also covers linear time.
It would be convenient to have a form of asymptotic notation that means "the running time grows at
most this much, but it could grow more slowly." We use "big-Oh" notation for just such occasions.



O(Big — Oh) — Notation
.

e The "Big-Oh™ Notation:
- Given functions f(n) and g(n),

- we say that f(n) 1S O(g(n))
— If and only if there are

1. positive constant ¢ and

2. positive constant

such that f(n) <
forn 2




O(Big — Oh) — Notation
.

A f(n) = O(g(n)) (read as “f of n is big-oh of g of n”)
f(n) = c * g(n)

A Iff there exist positive constants ¢ and

A n, such that for all n, n 2 n,

4 : cg(n)
; Upper Bound
| pp g
doesn't :
matter f
-




We say that running time is "Big-Oh of f(n)" or just "0 of f(n)". We use Big-Oh notation for Asymptotic
upper bounds, since it bounds the growth of the running time from the above for large enough input

sizes.

The general step wise procedure for Big-Oh runtime analysis is as follows:
o Figure out what the input is and what 'n’ represents.
o Express the maximum number of operations, the algorithm performs in terms of 'n'.
o Eliminate all excluding the highest order terms.

» Remove all the constant factors.



O(Big — Oh) -- Graphic lllustration

fin) =2n+6

. f(N) = 2n+6

- Need to find a
function g(n) and a
const. ¢ such as

f(n) < c.g(n)
e g(n)=nandc=3
e f(n) is O(N)
e The order of f(n)
IS 1. 7

g(n)=n




Examples of Big — Oh
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“Relatives” of Big-Oh
S

e “Relatives” of the Big-Oh
- Q (f(n)): Big Omega — asymptotic lower bound
- O (f(n)): Big Theta — asymptotic tight bound

e Big-Omega — think of it as the inverse of O(n)
- g(n) 1s Q (f(n)) it f(n) is O(g(n))

e Big-Theta — combine both Big-Oh and Big-Omega

- f(n) is ® (g(n)) if f(n) is O(g(n)) and g(n) is Q (f(n))




