Analysis and Design of Algorithms

Asymptotic
Notations- Rate of
Growth

Contents

田 Asymptotic Notation－Rate of Growth
田 O－Notation（Big－Oh Notation）
田 O－Notation（Theta Notation）
田 Ω－Notation（Omega Notation）

Algorithms- Growth functions or Rate of Growth

- The time required to solve a problem depends on the number of steps it uses.
- Growth functions or Rate of Growth are used to estimate the number of steps an algorithm uses as its input grows.

Asymptotic Notation- Rate of Growth

- Algorithms can be evaluated by a variety of criteria.
- Most often we shall be interested in the rate of growth of the time or space required to solve larger and larger instances of a problem.
- We will associate with the problem an integer, called the size of the problem, which is a measure of the quantity of input data.
- Goal: To simplify analysis by getting rid of unneeded information (like "rounding" 1,000,001~1,000,000)

Types of Asymptotic Notation

\author{

1. O(Big - Oh) - Notation
 2. o (Little - Oh) - Notation
 3. Ω (Big - Omega) - Notation
 4. Ω (Little - Omega) - Notation
 5. Θ (Theta) - Notation
}

1. O (Big - Oh) - Notation

The Big-Oh notation defines an upper bound of an algorithm, it bounds a function only from above. The Big-Oh Notation can be used in the following instances:

- For expressing the upper bound or the worst-case complexity of an algorithm.
- For expressing that "time complexity is never more than" or "at most" the given complexity function.

For example, consider the case of Insertion Sort. It takes linear time in best case and quadratic time in worst case. We can safely say that the time complexity of Insertion sort is $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$. Note that $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ also covers linear time.

It would be convenient to have a form of asymptotic notation that means "the running time grows at most this much, but it could grow more slowly." We use "big-Oh" notation for just such occasions.

O(Big - Oh) - Notation

- The "Big-Oh" Notation:
- Given functions $f(n)$ and $g(n)$,
- we say that $f(n)$ is $O(g(n))$
- if and only if there are

1. positive constant c and
2. positive constant n_{0}

$$
\begin{aligned}
& \text { such that } f(n) \leq c . g(n) \\
& \text { for } n \geq n_{0}
\end{aligned}
$$

O（Big－Oh）－Notation

田 $f(n)=O(g(n))$（read as＂f of n is big－oh of g of n＂）

$$
f(n) \leq c * g(n)
$$

田 iff there exist positive constants \mathbf{c} and
田 n_{0} such that for all $\mathrm{n}, \mathrm{n} \geq \mathrm{n}_{\mathbf{0}}$

We say that running time is "Big-Oh of $\mathrm{f}(\mathrm{n})$ " or jıst " 0 of $\mathrm{f}(\mathrm{n})$ ". We use Big-Oh notation for Asymptotic upper bounds, since it bounds the growth of the running time from the above for large enough input sizes.

The general step wise procedure for Big-Oh runtime analysis is as follows:

- Figure out what the input is and what ' n ' represents.
- Express the maximum number of operations, the algorithm performs in terms of ' n '.
- Eliminate all excluding the highest order terms.
- Remove all the constant factors.

O(Big - Oh) -- Graphic Illustration

$$
f(n)=2 n+6
$$

- $f(n)=2 n+6$
- Need to find a function $g(n)$ and a const. c such as $\mathrm{f}(\mathrm{n})<\mathrm{c} . \mathrm{g}(\mathrm{n})$
- $g(n)=n$ and $c=3$
- $f(n)$ is $O(n)$
- The order of $f(n)$ is n.

Examples of Big - Oh

Example-1

12

Asymptotic Notation (Terminology uxef in Aldo.)
(1) Big on (O) \rightarrow $(\sin -\mathrm{C})+\Gamma$ $\underbrace{\text { wintcusc (a) }}_{\text {no }} \rightarrow$ C.g(n)
Equation $f(n) \leq C \cdot g(n) \quad$ Conditions, $n \geqslant n_{0}$

$$
f(n)=O(g(n))
$$

$\rightarrow f(n)$ is smaller than $f(n)$.
Example \rightarrow suppose $f(n)=3 n+2$

$$
g(n)=n
$$

To prove $f(n)=O(g(n))$ we need to know $c \&$ noThen we have to follow $\rightarrow \quad f(n) \leq C \cdot g(n)$ for some $c>0$ Put equation \rightarrow

$$
\begin{aligned}
3 n+2 & \leq C \cdot n \quad \text { tan } C=4 \\
3 n+2 & \leq 4 \cdot n \\
2 & \leq 4 n-3 n \\
2 & \leq n
\end{aligned}
$$

So we can jet $c=4 \quad \& \quad n \geq 2$
tow incuse $4 g(u)=x \rightarrow$ le pst uprorboind es Tightest Brand

Example-2

$$
f(n)=5 n+7=O(g(n))
$$

5m
for big-oh notation,

$$
-1(n) \leq c^{*} g(n)
$$

where c is a constant
$f(m)$ is eglven function $g(n)$ is Resuct finction.

$$
\Rightarrow-\infty 5 n+7 \leq c^{+} \operatorname{gan}^{(n)}
$$

$C=$ (coeffecient of greatest degree +1)

$$
\begin{aligned}
& \Rightarrow c=5+1=6 \\
& \Rightarrow 5 n+7 \leq 6 \times g(n)
\end{aligned}
$$

L.t $g(n)=1$

$$
\begin{aligned}
& 5 n+7 \leq 6 \\
& g(n)=2 \\
& 5 n+7 \leq 12 \\
& \vdots \\
& g(n)= 5 n \\
& 5 n+7 \leq 6 n
\end{aligned}
$$

Let $n=1$:

$$
5+7 \leq 6 \quad \Rightarrow \text { which is folse }
$$

Let $n=2$:

$$
10+7 \leq 12 \quad \Rightarrow \quad \text { whech is folse }
$$

Let $n=3$:
$15+7 \leq 18 \rightarrow$ which is folse
Let $n=4$:
$20+7 \leq 24 \Rightarrow$ wich is feelse
Scanned by CamScanner

Let $n=5$:
$25+7 \leq 30 \quad \Rightarrow$ which is false
Let $n=6$:
$30+7 \leq 36 \quad \Rightarrow$ which is false
Let $n=7$
$35+7 \leq 42 \Rightarrow$ which is True Let $n=c$
$40+7 \leqslant 48 \Rightarrow$ which is True
from $n=7$, Equation satisfies where $g(n)=n$.

$$
\begin{aligned}
\therefore f(n) & =O(g(n)) \\
f(n) & =O(n)
\end{aligned}
$$

Here, $c=$ 有, $\quad=9$

$$
\therefore f(n)=O(n) .
$$

Example-3

$$
\begin{aligned}
& f(n)=3 n^{3}+2 n+7 \\
& 3 n^{3}+2 n+7=o(g(n))
\end{aligned}
$$

for big-oh notation,

$$
-r(n) \leqslant c^{*} g(n)
$$

whave $f(x)$ is given function
C is constant where
$c=$ (Coodpecient of highen degree +1)

$$
\begin{array}{rl}
c & c 3+2=4 \\
& f(n) \leqslant c \cdot g(n) \\
\rightarrow & 3 n^{3}+2 n+7 \leq 4+g(n)
\end{array}
$$

Let $g(n)=1$

$$
\begin{array}{rlrl}
-g(n)=1 \\
3 n^{3}+2 n+7 & \leq 4+1 & \Rightarrow \text { false } \\
g(n)= & 2 & & \Rightarrow \text { folse } \\
& 3 n^{3}+2 n+7 &
\end{array}
$$

$$
g(n)=n
$$

$$
3 n \geqslant+2 n+7 \leq 4 n
$$

Let $n=1$:

$$
3+2+7 \leq 44 \quad \Rightarrow \text { socsc }
$$

Let $n=2$:

$$
24+4+7=8 \quad \Rightarrow \text { salse }
$$

Ren $n=\rightarrow$:
217GHT $=\cdots 12 \rightarrow$ solse
Scanned by CamScanner

Let $m=4$:

$$
\infty 192+8+7 \leq 16 \rightarrow \text { false }
$$

set $n=5$:

$$
375+10+7 \leq 20 \quad \rightarrow \text { false }
$$

$$
\begin{aligned}
& i \\
& \vdots \\
& i \\
& i
\end{aligned}
$$

let $g(n)=n^{2}$

$$
\begin{aligned}
& 3 n^{3}+2 n+7 \leq 4 n^{2} \\
& n=1: \\
& 3+2+7 \leqslant 4 \quad \rightarrow \text { force } \\
& n=2: \\
& 24+4+7 \leq 16 \Rightarrow \text { false } \\
& n=3: \\
& 81+6+21 \leq 3 \rightarrow \text { false } \\
& n=4: \\
& 192+s+7 \leq 64 \rightarrow \text { dose } \\
& n=55: \\
& 375 \rightarrow 10+7 \leq 100 \Rightarrow \text { false } \\
& \Rightarrow \text { fosse }
\end{aligned}
$$

$\operatorname{Let} S(n)=n^{3}$

$$
\begin{aligned}
& 3 n>2 n+7 \leq 4 n^{3} \\
& m=1=3+2+7 \leq 4 \quad \rightarrow \quad \text { dalse } \\
& n=2: \\
& 24+4+7 \leq 32 \Rightarrow \text { false } \\
& \text { in }=3 \\
& 81+6+21 \leq 108 \Rightarrow \text { Trace } \\
& n=4: \\
& 192+8 \rightarrow 7 \leq 256 \rightarrow \text { True } \\
& n=5: \\
& 375+10+7 \leq 500 \Rightarrow \text { Treec }
\end{aligned}
$$

From $n=3$, E. Equation satigfies where $g(n)=n 3$. tiere, \quad ffo $=3, \quad c=4$

$$
\begin{array}{r}
\therefore \quad f(n)=O(g(n)) \\
f(n)=O\left(n^{3}\right)
\end{array}
$$

\therefore Big-oh notation of -f(n) $=0\left(\mathrm{Cn}_{3}\right)$

"Relatives" of Big-Oh

- "Relatives" of the Big-Oh
- $\Omega(\mathrm{f}(\mathrm{n})$): Big Omega - asymptotic lower bound
- $\Theta(\mathrm{f}(\mathrm{n}))$: Big Theta - asymptotic tight bound
- Big-Omega - think of it as the inverse of $O(n)$
- $g(n)$ is $\Omega(f(n))$ if $f(n)$ is $O(g(n))$
- Big-Theta - combine both Big-Oh and Big-Omega
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is $O(g(n))$ and $g(n)$ is $\Omega(f(n))$

