
Analysis and Design of
Algorithms

UNIT-1

Recurrence Relations

Content

 Conclusion Analysis of Algorithm

 Sequences and Recurrence Relations

 Recursion and Recurrence

 Recursive Algorithms

 Recurrence Relation

 Forming Recurrence Relation

 Solving Recurrence Relations

2

Conclusion

Analysis of Algorithm

3

4

5

6

Kinds of analyses

Worst-case: (usually)
• T(n) = maximum time of algorithm on any input of

size n.
Average-case: (sometimes)

• T(n) = expected time of algorithm over all inputs of
size n.

• Need assumption of statistical distribution of inputs.
Best-case: (NEVER)

• Cheat with a slow algorithm that works fast on some
input.

Asymptotic performance

n

T(n)

n0

• Asymptotic analysis is a useful tool
to help to structure our thinking
toward better algorithm

• We shouldn’t ignore asymptotically

slower algorithms, however.

• Real-world design situations often

call for a careful balancing

When n gets large enough, a Q(n2) algorithm always beats a

Q(n3) algorithm.

Recurrence Relation

9

10

Sequences and Recurrence Relations

11

Sequences and Recurrence Relations

Recursion and Recurrences

 Recursion is a particularly powerful kind of reduction, which can be

described loosely as follows:

• If the given instance of the problem is small or simple enough, just

solve it.

• Otherwise, reduce the problem to one or more simpler instances of

the same problem.

 Recursion is generally expressed in terms of recurrences.

 In other words, when an algorithm calls to itself, we can often

describe its running time by a recurrence equation.

 recurrence equation describes the overall running time of a

problem of size n in terms of the running time on smaller inputs.

12

Recursive Algorithms

 A recursive algorithm is one in which objects are

defined in terms of other objects of the same type.

 Advantages:

– Simplicity of code

– Easy to understand

 Disadvantages

– Memory

– Speed

– Possibly redundant work

 Tail recursion offers a solution to the memory

problem, but really, do we need recursion?

Recursive Algorithms: Analysis

 We have already discussed how to analyze

the running time of (iterative) algorithms

 To analyze recursive algorithms, we require

more sophisticated techniques

 Specifically, we study how to defined & solve

recurrence relations

Motivating Examples: Factorial

 Recall the factorial function:

 Consider the following (recursive) algorithm for computing n!

Factorial

Input: nN
Output: n!

1. If (n=1) or (n=0)

2. Then Return 1

3. Else Return n  Factorial(n-1)

4. Endif

5. End

1 if n= 1

n! =

n.(n-1) if n > 1

Factorial: Analysis

How many multiplications M(x) does factorial perform?

• When n=1 we don’t perform any

• Otherwise, we perform one…

• … plus how ever many multiplications we perform in the recursive call
Factorial(n-1)

• The number of multiplications can be expressed as a formula

(similar to the definition of n!

M(0) = 0

M(n) = 1 + M(n-1)

• This relation is known as a recurrence relation

17

Recurrence Relations

 Definition: A recurrence relation for a sequence {an}

is an equation that expresses an in terms of one or

more of the previous terms in the sequence:

a0, a1, a2, …, an-1

for all integers nn0 where n0 is a non-negative

integer.

 A sequence is called a solution of a recurrence if its

terms satisfy the recurrence relation

Recurrence Relations: Solutions

 Consider the recurrence relation -

an = 2 * an-1 - an-2

 It has the following sequences an as solutions

– an= 3n

– an= n+1

– an=5

 The initial conditions + recurrence relation

uniquely determine the sequence.

