
Analysis and Design of
Algorithms

UNIT-1

Recurrence Relations

Content

 Conclusion Analysis of Algorithm

 Sequences and Recurrence Relations

 Recursion and Recurrence

 Recursive Algorithms

 Recurrence Relation

 Forming Recurrence Relation

 Solving Recurrence Relations

2

Conclusion

Analysis of Algorithm

3

4

5

6

Kinds of analyses

Worst-case: (usually)
• T(n) = maximum time of algorithm on any input of

size n.
Average-case: (sometimes)

• T(n) = expected time of algorithm over all inputs of
size n.

• Need assumption of statistical distribution of inputs.
Best-case: (NEVER)

• Cheat with a slow algorithm that works fast on some
input.

Asymptotic performance

n

T(n)

n0

• Asymptotic analysis is a useful tool
to help to structure our thinking
toward better algorithm

• We shouldn’t ignore asymptotically

slower algorithms, however.

• Real-world design situations often

call for a careful balancing

When n gets large enough, a Q(n2) algorithm always beats a

Q(n3) algorithm.

Recurrence Relation

9

10

Sequences and Recurrence Relations

11

Sequences and Recurrence Relations

Recursion and Recurrences

 Recursion is a particularly powerful kind of reduction, which can be

described loosely as follows:

• If the given instance of the problem is small or simple enough, just

solve it.

• Otherwise, reduce the problem to one or more simpler instances of

the same problem.

 Recursion is generally expressed in terms of recurrences.

 In other words, when an algorithm calls to itself, we can often

describe its running time by a recurrence equation.

 recurrence equation describes the overall running time of a

problem of size n in terms of the running time on smaller inputs.

12

Recursive Algorithms

 A recursive algorithm is one in which objects are

defined in terms of other objects of the same type.

 Advantages:

– Simplicity of code

– Easy to understand

 Disadvantages

– Memory

– Speed

– Possibly redundant work

 Tail recursion offers a solution to the memory

problem, but really, do we need recursion?

Recursive Algorithms: Analysis

 We have already discussed how to analyze

the running time of (iterative) algorithms

 To analyze recursive algorithms, we require

more sophisticated techniques

 Specifically, we study how to defined & solve

recurrence relations

Motivating Examples: Factorial

 Recall the factorial function:

 Consider the following (recursive) algorithm for computing n!

Factorial

Input: nN
Output: n!

1. If (n=1) or (n=0)

2. Then Return 1

3. Else Return n Factorial(n-1)

4. Endif

5. End

1 if n= 1

n! =

n.(n-1) if n > 1

Factorial: Analysis

How many multiplications M(x) does factorial perform?

• When n=1 we don’t perform any

• Otherwise, we perform one…

• … plus how ever many multiplications we perform in the recursive call
Factorial(n-1)

• The number of multiplications can be expressed as a formula

(similar to the definition of n!

M(0) = 0

M(n) = 1 + M(n-1)

• This relation is known as a recurrence relation

17

Recurrence Relations

 Definition: A recurrence relation for a sequence {an}

is an equation that expresses an in terms of one or

more of the previous terms in the sequence:

a0, a1, a2, …, an-1

for all integers nn0 where n0 is a non-negative

integer.

 A sequence is called a solution of a recurrence if its

terms satisfy the recurrence relation

Recurrence Relations: Solutions

 Consider the recurrence relation -

an = 2 * an-1 - an-2

 It has the following sequences an as solutions

– an= 3n

– an= n+1

– an=5

 The initial conditions + recurrence relation

uniquely determine the sequence.

