Analysis and Design of Algorithms

UNIT-1

Recurrence Relations

Content

- Conclusion Analysis of Algorithm
- Sequences and Recurrence Relations
- Recursion and Recurrence
- Recursive Algorithms
- Recurrence Relation
- Forming Recurrence Relation
- Solving Recurrence Relations

Conclusion

Analysis of Algorithm

Algorithm Analgsis \rightarrow It proviten background duformabises nut gives us a gamers J lea how long an Also will take for a given problem sect suppose A problem have h Inputs. \& we get comptrisien n times for arrange them in to Asceneling order fo operation s ger formers.

- purgore of $A l g o$ ix "hot to find a formula"!
- Analysis of Algo without regard to any specific computer type. Alg \rightarrow Counts the Ho of Different character in a file.

For all 256 char do
Assign zero to the counter end For loos. loop 1
While there are more characters in the file to
Get the next shareofer
suarement the counter for this character by one end while loos.
Description \rightarrow - total 256 passes for the tuitializ trice loop ie hat

- If n char in the huput Ale there ire a passe for the secant loop let los 2 .
- For each pus of the look there in a deck exist that
s) for loop Variable is within the bounds.
- divinalization loos (io.loof 1) doe a set of 257 asxigmmench O 56 hnevemente for the lop Variable
Is 56 hnevementes that the variable is within tue loop bound.

For the second loop, we will need to do shack of ther contition $N+1$ times $C+1$ for the lart deck whom the file is ampty.) f we will Luevemonte N countert.
The total H_{0} o. of operations is

- Increment $\mathrm{N}+2.56$
- Ascignmentr e57
whecks $(H+25 s)$ condituons.
SoIf tucrease chav in filc xe $\rightarrow 500,1000,10000$ ofe we have b hucrease the oferation f checkA.
So Algo. Anabysic requires a set of Kuled to det a mine how operations are to be counted.
Exaof Analysis Kales \rightarrow
(1.) Assume A time unit.
(2) Exeaction of one of the following zeration take time 1 (one) $=$
(a) Assignment opzeration
(b) Ilo opartben (bingle)
(c) Single Booleau operation, numeric oferation
(-) Single Anthmetic operations
(b) furction Retarn
(f) Aroay Andex aferations, finter Dofeference
(8.) Running time of a sefectivin atatemant (switch) is the Hun- for the cinditien evalrafion + Maximum Kumming tinefor the Individual clenves in the selection.
(17) Loos execution the ix the sum of the body loop over number the executed + time for the loup check 4 update operatives + time for the loop getup.
(5) Sunning time of a function cal is 1 for setup f the then for any parameter alaulationer of Time Re puived for the execution of the function bot.
The analysis of an Aldo. is to evaluate the performance of the Algor biased on the given models of metrics.
(1) Input size.
(2.) Running time \rightarrow worst canc f Average care generally we finting onty the worst cane Running true
(3) Order of growth \rightarrow we generally bee the growth Rate of the Running time.
- we only consider the leading terms of a time formula. The leading term is n^{2} in expression $n^{2}+100 n+5000$.
So Alga Andysix is a part of computational Bmplexity Theory In The ore tical Analysis of $A l g o$ It is
common to estimate Their complexity in "apgesp" Asymptotic sauce" ie \rightarrow To estimate the complexity fumctan for largos length of lieut.
 implem out cation of the larne Algor may differ in efficiency.

Kinds of analyses

Worst-case: (usually)

- $T(n)=$ maximum time of algorithm on any input of size n.
Average-case: (sometimes)
- $T(n)=$ expected time of algorithm over all inputs of size n.
- Need assumption of statistical distribution of inputs.

Best-case: (NEVER)

- Cheat with a slow algorithm that works fast on some input.

Asymptotic performance

When n gets large enough, a $\Theta\left(n^{2}\right)$ algorithm always beats a $\Theta\left(n^{3}\right)$ algorithm.

- Asymptotic analysis is a useful tool to help to structure our thinking toward better algorithm
- We shouldn't ignore asymptotically slower algorithms, however.
- Real-world design situations often call for a careful balancing

Recurrence Relation

Sequences and Recurrence Relations

Consider the following two sequences:

$$
\begin{aligned}
& S_{1}: 3,5,7,9, \ldots \\
& S_{2}: 3,9,27,81, \ldots
\end{aligned}
$$

We can find a formula for the nth term of sequences S_{1} and S_{2} by observing the pattern of the sequences.

$$
\begin{aligned}
& S_{1}: 2 \cdot 1+1,2 \cdot 2+1,2 \cdot 3+1,2 \cdot 4+1, \ldots \\
& S_{2}: 3^{1}, 3^{2}, 3^{3}, 3^{4}, \ldots
\end{aligned}
$$

For $S_{1}, a_{n}=2 n+1$ for $n \geq 1$, and for $S_{2}, a_{n}=3^{n}$ for $n \geq 1$. This type of formula is called an explicit formula for the sequence, because using this formula we can directly find any term of the sequence without using other terms of the sequence. For example, $a_{3}=2 \cdot 3+1=7$.

Sequences and Recurrence Relations

A recurrence relation for a sequence $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$ is an equation that relates a_{n} to some of the terms $a_{0}, a_{1}, a_{2}, \ldots, a_{n-2}, a_{n-1}$ for all integers n with $n \geq k$, where k is a nonnegative integer. The initial conditions for the recurrence relation are a set of values that explicitly define some of the members of $a_{0}, a_{1}, a_{2}, \ldots, a_{k-1}$.

The equation

$$
a_{n}=2 a_{n-1}+a_{n-2} \quad \text { for all } n \geq 2,
$$

as defined above, relates a_{n} to a_{n-1} and a_{n-2}. Here $k=2$. So this is a recurrence relation with initial conditions $a_{0}=5$ and $a_{1}=7$.

Recursion and Recurrences

- Recursion is a particularly powerful kind of reduction, which can be described loosely as follows:
- If the given instance of the problem is small or simple enough, just solve it.
- Otherwise, reduce the problem to one or more simpler instances of the same problem.
- Recursion is generally expressed in terms of recurrences.
- In other words, when an algorithm calls to itself, we can often describe its running time by a recurrence equation.
- recurrence equation describes the overall running time of a problem of size n in terms of the running time on smaller inputs.

Recursive Algorithms

- A recursive algorithm is one in which objects are defined in terms of other objects of the same type.
- Advantages:
- Simplicity of code
- Easy to understand
- Disadvantages
- Memory
- Speed
- Possibly redundant work
- Tail recursion offers a solution to the memory problem, but really, do we need recursion?

Recursive Algorithms: Analysis

- We have already discussed how to analyze the running time of (iterative) algorithms
- To analyze recursive algorithms, we require more sophisticated techniques
- Specifically, we study how to defined \& solve recurrence relations

Motivating Examples: Factorial

- Recall the factorial function:

$$
n!= \begin{cases}1 & \text { if } n=1 \\ n .(n-1) & \text { if } n>1\end{cases}
$$

- Consider the following (recursive) algorithm for computing n !

FACTORIAL
Input: $\mathrm{n} \in N$
Output: n!

1. If $(n=1)$ or $(n=0)$
2. Then Return 1
3. Else Return $\mathrm{n} \times \operatorname{FACTORIAL}(\mathrm{n}-1)$
4. Endif
5. End

Factorial: Analysis

How many multiplications $\mathrm{M}(\mathrm{x})$ does factorial perform?

- When $n=1$ we don't perform any
- Otherwise, we perform one...
- ... plus how ever many multiplications we perform in the recursive call FACTORIAL(n-1)
- The number of multiplications can be expressed as a formula (similar to the definition of n !

$$
\begin{aligned}
& M(0)=0 \\
& M(n)=1+M(n-1)
\end{aligned}
$$

- This relation is known as a recurrence relation

Recurrence Relation

- A recurrence relation for the sequence, a_{o}, a_{1}, $\ldots a_{n}$, is an equation that relates a_{n} to certain of its predecessors $a_{o}, a_{1}, \ldots, a_{n-1}$.
- Initial conditions for the sequence a_{o}, a_{1}, \ldots are explicitly given values for a finite number of the terms of the sequence.

Recurrence Relations

- Definition: A recurrence relation for a sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms in the sequence:

$$
a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}
$$

for all integers $n \geq n_{0}$ where n_{0} is a non-negative integer.

- A sequence is called a solution of a recurrence if its terms satisfy the recurrence relation

Recurrence Relations: Solutions

- Consider the recurrence relation -

$$
a_{n}=2^{*} a_{n-1}-a_{n-2}
$$

- It has the following sequences a_{n} as solutions
- $a_{n}=3 n$
- $a_{n}=n+1$
- $a_{n}=5$
- The initial conditions + recurrence relation uniquely determine the sequence.

