Analysis and Design of Algorithms

UNIT-1

Recurrence Relations

Content

- Recurrence Relation
- Forming Recurrence Relation
- Solving Recurrence Relations
- Iterative Method
- Substitution Method
- Recursion Tree Method
- Master's Method

Definition

- A recurrence relation, $T(n)$, is a recursive function of integer variable n.
- Like all recursive functions, it has both recursive case and base case.
- Example:

$$
T(n)= \begin{cases}a & \text { if } n=1 \\ 2 T(n / 2)+b n+c & \text { if } n>1\end{cases}
$$

- The portion of the definition that does not contain T is called the base case of the recurrence relation; the portion that contains T is called the recurrent or recursive case.
- Recurrence relations are useful for expressing the running times (i.e., the number of basic operations executed) of recursive algorithms

Recurrence Examples

$$
T(n)=\left\{\begin{array}{cl}
c & n=1 \\
2 T\left(\frac{n}{2}\right)+c & n>1
\end{array}\right.
$$

$$
T(n)=\left\{\begin{array}{cl}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

Examples of recurrence relations

- Example-1:
- Initial condition $\mathrm{a}_{0}=1$ (BASE CASE)
- Recursive formula: $a_{n}=1+2 a_{n-1}$ for $n \geq 2$
- First few terms are: $1,3,7,15,31,63, \ldots$
- Example-2:
- Initial conditions $a_{0}=1, a_{1}=2$ (BASE CASE)
- Recursive formula: $a_{n}=3\left(a_{n-1}+a_{n-2}\right)$ for $n \geq 2$
- First few terms are: 1, 2, 9, 33, 126, 477, 1809, 6858, 26001,...

Example-3: Fibonacci sequence

- Initial conditions: (BASE CASE)
- $f_{1}=1, f_{2}=2$
- Recursive formula:
$-f_{n+1}=f_{n-1}+f_{n}$ for $n \geq 3$
- First few terms:

n	1	2	3	4	5	6	7	8	9	10	11
f_{n}	1	2	3	5	8	13	21	34	55	89	144

Example-4: Compound interest

- Given
- $\mathrm{P}=$ initial amount (principal)
- $\mathrm{n}=$ number of years
- r = annual interest rate
- $A=$ amount of money at the end of n years

At the end of:

- 1 year:

$$
\begin{array}{ll}
\mathrm{A}=\mathrm{P}+\mathrm{rP} & =\mathrm{P}(1+r) \\
\mathrm{A}=\mathrm{P}+\mathrm{rP}(1+\mathrm{r}) & =\mathrm{P}(1+r)^{2} \\
\mathrm{~A}=\mathrm{P}+\mathrm{rP}(1+r)^{2} & =\mathrm{P}(1+r)^{3}
\end{array}
$$

- 2 years:
- Obtain the formula $A=P(1+r)^{n}$

Recurrence Relations: Terms

- Recurrence relations have two parts:
- recursive terms and
- non-recursive terms

$$
T(n)=2 T(n-2)+n^{2}-10
$$

- Recursive terms come from when an algorithms calls itself
- Non-recursive terms correspond to the non-recursive cost of the algorithm: work the algorithm performs within a function
- First, we need to know how to solve recurrences.

Forming Recurrence Relation

- For a given recursive method, the base case and the recursive case of its recurrence relation correspond directly to the base case and the recursive case of the method.
- Example 1: Write the recurrence relation for the following method.

```
void f(int n) {
    if (n>0) {
        cout<<n;
        f(n-1) ;
    } }
```

- The base case is reached when $\mathrm{n}==\mathrm{o}$. The method performs one comparison. Thus, the number of operations when $n==0, T(o)$, is some constanta.
- When $\mathrm{n}>0$, the method performs two basic operations and then calls itself, using ONE recursive call, with a parameter $\mathrm{n}-1$.
- Therefore the recurrence relation is:

$$
\begin{array}{ll}
T(0)=a & \text { where } a \text { is constant } \\
T(n)=b+T(n-1) & \text { where } b \text { is constant, } n>0
\end{array}
$$

Forming Recurrence Relation

- Example 2: Write the recurrence relation for the following method.

```
int g(int n) {
    if (n = 1)
        return 2;
    else
        return 3 * g(n / 2) + g( n / 2) + 5;
}
```

- The base case is reached when $\mathrm{n}==1$. The method performs one comparison and one return statement. Therefore, $\mathrm{T}(1)$, is constant \mathbf{c}.
- When $n>1$, the method performs TWO recursive calls, each with the parameter $\mathrm{n} / 2$, and some constant \# of basic operations.
- Hence, the recurrence relation is:

$$
\begin{array}{ll}
T(1)=c & \text { for some constant } c \\
T(n)=b+2 T(n / 2) & \text { for a constant } b
\end{array}
$$

Solving Recurrence Relations

田Iteration method
田Substitution method
田 Recursion Tree
田 Master method

Iteration method

Pnalysis of Iterative programming Trme complesity ${ }^{\text {P }}$,

- Approximaion Techrépue
- Not Actuan e Accurate (Red Times)

Now to fint Agproximet a tine?
Algo

Itertive
fnc \rightarrow hfunction.

$$
\frac{A}{s}(n)
$$

If (n/2): II Recuption due to calling himself ofuin.

Any grogram written in Itaration car be converted tuto Recurrion. I Recursion to fiteration methat. (ar vice varsa. 5 b-th of thene technifue are just equivaleut ith makner.

- Both of $\$ 8$ the techneqete are gower \&irs workwice enthe Put Akalgsisite bothe ave Different.

$$
\begin{aligned}
& \text { arple for } i \text { to } m
\end{aligned}
$$

- If any program doesnot Contain Jteratuen of ked That mean $i t$ has a "constant time", means No depentency in Running tome (ब) Input size. whatever the Input size the Running thrice ix Constant. say $O(1) \rightarrow$ Constant time.
Examples \rightarrow for Approximation of time.
(1.) $A($ ($)$ tut i;
for ($i=1$ to n) 11 loos n timer Runs
$\}$ print ("avi"); \rightarrow "n time Ravi Prints.
So complexity $\rightarrow O(n)$.
(2) $A($, $\{\ln t$ i, $;$
for ($i=1$ to n)
11 n time 1
\& for $(j=1$ to $n)$
$11 x$ times.
print ("Ravi") II n^{2} times. expo
Complexity $\rightarrow O\left(n^{2}\right)$

1. Iteration Method

Step-1: Expand the Recurrence.
Step-2: Express the expansion as a summation, by plugging the Recurrence back into itself, until you see a Pattern.
(Use algebra to express as a summation)
Step-3: Evaluate the summation.

田 Also known as "Try back substituting until you know what is going on".

Solving Recurrence Relations Iteration method

- In evaluating the summation one or more of the following summation formulae may be used:
- Arithmetic series:

$$
\sum_{i=1}^{n} k=1+2+\ldots+n=\frac{n(n+1)}{2}
$$

-Special Cases of Geometric Series:

- Geometric Series:
$\sum_{k=0}^{n} x^{k}=1+x+x^{2}+\ldots+x^{n}=\frac{x^{n+1}-1}{x-1}(x \neq 1)$

$$
\sum_{k=0}^{n-1} x^{k}=\frac{x^{n}-1}{x-1}(x \neq 1)
$$

$$
\begin{aligned}
& \sum_{k=0}^{n-1} 2^{k}=2^{n}-1 \\
& \sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} \quad \text { if } \mathrm{x}<1
\end{aligned}
$$

Solving Recurrence Relations -
 Iteration method

- Harmonic Series:
$\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\ldots+\frac{1}{n} \approx \ln n$
- Others:

$$
\begin{array}{ll}
\sum_{k=1}^{n} \lg k \approx n \lg n & \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \\
\sum_{k=0}^{n-1} c=c n . & \sum_{k=0}^{n} k(k+1)=\frac{n(n+1)(n+2)}{3} \\
\sum_{k=0}^{n-1} \frac{1}{2^{k}}=2-\frac{1}{2^{n-1}} &
\end{array}
$$

Example-1

$$
\begin{aligned}
\mathrm{s}(\mathrm{n}) \quad & \mathrm{c}+\mathrm{s}(\mathrm{n}-1) \\
& \mathrm{c}+\mathrm{c}+\mathrm{s}(\mathrm{n}-2) \\
& 2 \mathrm{c}+\mathrm{s}(\mathrm{n}-2) \\
& 2 \mathrm{c}+\mathrm{c}+\mathrm{s}(\mathrm{n}-3) \\
& 3 \mathrm{c}+\mathrm{s}(\mathrm{n}-3) \\
& \cdots \\
& \\
& \mathrm{kc}+\mathrm{s}(\mathrm{n}-\mathrm{k})=\mathrm{ck}+\mathrm{s}(\mathrm{n}-\mathrm{k})
\end{aligned}
$$

Example-1

田 So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
s(n)=c k+s(n-k)
$$

田 What if $\mathrm{k}=\mathrm{n}$?
$s(n)=c n+s(0)=c n$

Example-1

- So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
s(n)=c k+s(n-k)
$$

- What if $\mathrm{k}=\mathrm{n}$?

$$
\mathrm{s}(\mathrm{n})=\mathrm{cn}+\mathrm{s}(0)=\mathrm{cn}
$$

- So

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

- Thus in general

$$
s(n)=c n
$$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- $\mathrm{s}(\mathrm{n})$
$=n+s(n-1)$
$=n+n-1+s(n-2)$
$=n+n-1+n-2+s(n-3)$
$=n+n-1+n-2+n-3+s(n-4)$
= ...
$=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\ldots+\mathrm{n}-(\mathrm{k}-1)+\mathrm{s}(\mathrm{n}-\mathrm{k})$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- $\mathrm{s}(\mathrm{n})$
$=\mathrm{n}+\mathrm{s}(\mathrm{n}-1)$
$=n+n-1+s(n-2)$
$=n+n-1+n-2+s(n-3)$
$=n+n-1+n-2+n-3+s(n-4)$
=..
$=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\ldots+\mathrm{n}-(\mathrm{k}-1)+\mathrm{s}(\mathrm{n}-\mathrm{k})$
$=\sum_{i=n-k+1}^{n} i+s(n-k)$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
\sum_{i=n-k+1}^{n} i+s(n-k)
$$

- What if $\mathrm{k}=\mathrm{n}$?

$$
\sum_{i=1}^{n} i+s(0)=\sum_{i=1}^{n} i+0=n \frac{n+1}{2}
$$

- Thus in general

$$
s(n)=n \frac{n+1}{2}
$$

Example-2

- Solve $T(n)=2 T(n / 2)+n$.

Solution: \quad Assume $n=2^{k}($ so $k=\log n)$.

$$
\begin{array}{rlrl}
\mathrm{T}(\mathrm{n}) & =2 \mathrm{~T}(\mathbf{n} / \mathbf{2})+\mathbf{n} & \\
& =2\left(2 \mathrm{P}\left(\mathbf{n} / 2^{2}\right)+\mathbf{n} / \mathbf{2}\right)+\mathrm{n} & \mathrm{~T}(\mathrm{n} / 2)=2 \mathrm{~T}\left(\mathrm{n} / 2^{2}\right)+\mathrm{n} / 2 \\
& =2^{2} T\left(n / 2^{2}\right)+2 n & & \\
& =2^{2}\left(2 T\left(\mathbf{n} / 2^{3}\right)+\mathbf{n} / 2^{2}\right)+2 n & & T\left(n / 2^{2}\right)=2 T\left(n / 2^{3}\right)+n / 2^{2} \\
& =2^{3} T\left(n / 2^{3}\right)+3 n & \\
& =\ldots & \\
& =2^{k} T\left(n / 2^{k}\right)+\boldsymbol{k} n & & \\
& =n T(1)+n \log n & & \\
& =\Theta(n \log n) &
\end{array}
$$

