
Analysis and Design of
Algorithms

UNIT-1

Recurrence Relations

Content

 Recurrence Relation

 Forming Recurrence Relation

 Solving Recurrence Relations

– Iterative Method

– Substitution Method

– Recursion Tree Method

– Master’s Method

2

3

Recurrence Examples

























1
2

2

1

)(

nc
n

T

nc

nT


























1

1

)(

ncn
b

n
aT

nc

nT

Examples of recurrence relations

 Example-1:

– Initial condition a0 = 1 (BASE CASE)

– Recursive formula: a n = 1 + 2a n-1 for n > 2

– First few terms are: 1, 3, 7, 15, 31, 63, …

 Example-2:
– Initial conditions a0 = 1, a1 = 2 (BASE CASE)

– Recursive formula: a n = 3(a n-1 + a n-2) for n > 2

– First few terms are: 1, 2, 9, 33, 126, 477, 1809, 6858,

26001,…

Example-3: Fibonacci sequence

 Initial conditions: (BASE CASE)

– f1 = 1, f2 = 2

 Recursive formula:

– f n+1 = f n-1 + f n for n > 3

 First few terms:

n 1 2 3 4 5 6 7 8 9 10 11

fn 1 2 3 5 8 13 21 34 55 89 144

Example-4: Compound interest

 Given

– P = initial amount (principal)

– n = number of years

– r = annual interest rate

– A = amount of money at the end of n years

At the end of:

 1 year: A = P + rP = P(1+r)

 2 years: A = P + rP(1+r) = P(1+r)2

 3 years: A = P + rP(1+r)2 = P(1+r)3

…

 Obtain the formula A = P (1 + r) n

Recurrence Relations: Terms

 Recurrence relations have two parts:

– recursive terms and

– non-recursive terms

T(n) = 2T(n-2) + n2 -10

 Recursive terms come from when an algorithms calls

itself

 Non-recursive terms correspond to the non-recursive

cost of the algorithm: work the algorithm performs

within a function

 First, we need to know how to solve recurrences.

9

10

11

Solving Recurrence Relations

 Iteration method

Substitution method

Recursion Tree

Master method

Iteration method

12

13

14

15

1. Iteration Method

Step-1: Expand the Recurrence.

Step-2: Express the expansion as a summation,

by plugging the Recurrence back into itself,

until you see a Pattern.

(Use algebra to express as a summation)

Step-3: Evaluate the summation.

 Also known as “Try back substituting until you know

what is going on”.

16

17

18

Example-1

s(n) = c + s(n-1)

c + c + s(n-2)

2c + s(n-2)

2c + c + s(n-3)

3c + s(n-3)

…

kc + s(n-k) = ck + s(n-k)










0)1(

00
)(

nnsc

n
ns

Example-1

 So far for n >= k we have

s(n) = ck + s(n-k)

 What if k = n?

s(n) = cn + s(0) = cn

19

20

 So far for n >= k we have

s(n) = ck + s(n-k)

 What if k = n?

s(n) = cn + s(0) = cn

 So

 Thus in general

s(n) = cn










0)1(

00
)(

nnsc

n
ns

Example-1

21

 s(n)

= n + s(n-1)

= n + n-1 + s(n-2)

= n + n-1 + n-2 + s(n-3)

= n + n-1 + n-2 + n-3 + s(n-4)

= …

= n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k)










0)1(

00
)(

nnsn

n
ns

22

 s(n)

= n + s(n-1)

= n + n-1 + s(n-2)

= n + n-1 + n-2 + s(n-3)

= n + n-1 + n-2 + n-3 + s(n-4)

= …

= n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k)

=










0)1(

00
)(

nnsn

n
ns

)(
1

knsi
n

kni




23

 So far for n >= k we have

 What if k = n?

 Thus in general










0)1(

00
)(

nnsn

n
ns

)(
1

knsi
n

kni




2

1
0)0(

11


 



n
nisi

n

i

n

i

2

1
)(




n
nns

Example-2

24

 Solve T(n) = 2T(n/2) + n.

Solution: Assume n = 2k (so k = log n).

T(n) = 2T(n/2) + n

= 2 (2T(n/22) + n/2) + n T(n/2) = 2T(n/22) + n/2

= 22 T(n/22) + 2n

= 22 (2T(n/23) + n/22) + 2n T(n/22) = 2T(n/23) + n/22

= 23T(n/23) + 3n

= …

= 2kT(n/2k) + k n

= n T(1) + n log n

= (n log n)

