

Analysis and Design of Algorithms

UNIT-1

Recurrence Relations

Content

Solving Recurrence Relations

- Substitution Method

SUBSTITUTION METHOD

2. SUBSTITUTION METHOD

- The substitution method comprises of 3 steps-
 - 1. "Making a good guess" method or Guess the form of the solution.
 - 2. then use induction or Verify by induction method.
 - 3. Solve for constants or to find the constants and show that solution works.
 - Examples:
 - $T(n) = 2T(n/2) + \Theta(n) \rightarrow T(n) = \Theta(n \log n)$

2. SUBSTITUTION METHOD

- The substitution method can be used to establish either upper or lower bounds on a recurrence.
- We substitute the guessed solution for the function, when applying the inductive hypothesis to smaller values. Hence the name "substitution method".
- This method is powerful, but we must be able to guess the form of the answer in order to apply it.
 - In this method "To guess the solution, play around with small values for insight".
 - That is in this method first one start "guess a solution and prove by induction".

Substitution method - An example

- T(n) = 2T((n/2)) +n
 We guess that the solution is T(n)=0(n lg n).
 - i.e. to show that $T(n) \leq c n \lg n$, for some constant c > 0 and $n \geq m$. Assume that this bound holds for [n/2]. So, we get $T(n) \leq 2(c * (n/2) \lg((n/2))) + n \rightarrow T(n/2) = c * (n/2) \lg((n/2))$ $\leq cn \lg(n/2) + n$ $= cn \lg n - cn \lg 2 + n$ $= cn \lg n - cn + n$ $\leq cn \lg n$ where, the last step holds as long as $c \geq 1$.