ARTERIAL BLOOD GAS ANALYSIS

By Hina Vaish

What is an ABG?

Arterial blood gas analysis is an essential part of diagnosing and managing the patient's oxygenation status, ventilation failure and acid base balance.

What Is An ABG? pH [H⁺]

 $PaCO_2$ Partial pressure CO_2

 PaO_2 Partial pressure O_2

HCO₃ Bicarbonate

BE Base excess

SaO₂ Oxygen Saturation

pH classification

7.35-7.45 – Normal
 <7.35 – acidosis
 >7.45 – alkalosis

REF: Davidsons Principle and Practice of medicine,20 th edition

PaCO2 assessment

Normal 35-45 mmHg
Respiratory acidosis >45
Respiratory alkalosis<35

Metabolic assessment

	Base excess	HCO3
Normal	0 ±2	24 ±2
Met.acidosis	<-2	<22
Met.alkalosis	>+2	>26

Anion gap: Plasma anions not measured by routine laboratory.

AG = (Na+K) - (CI+HCO3). Normal = $12 \pm 4 \text{ mEq/L}$

Acid/Base Balance

> The pH is a measurement of the acidity or alkalinity of the blood.

> It is inversely proportional to the no. of (H+) in the blood.

Changes in body system functions that occur in <u>an acidic</u> <u>state</u> decreases the force of cardiac contractions, decreases the vascular response to catecholamines, and a diminished response to the effects and actions of certain medications.

An <u>alkalotic state</u> interferes with tissue oxygenation and normal neurological and muscular functioning.

Acid/Base Relationship

$H_2O + CO_2 \implies H_2CO_3 \implies HCO_3 + H^+$

Review of medical physiology, William F. Ganong,21st edition

Acid-base Balance Henderson-Hasselbalch Equation

pH = pK + log[HCO3-]pK=6.1 dissociation.03 [PaCO2].03= solubilityco-efficient for Co2(converts mmHg to mEq/L)

Clinical practice in Respiratory Care, James B.Fink. G E.Hunt

pH is inversely related to [H⁺]; a pH change of 1.00 represents a 10-fold change in [H⁺]

All you need to know to interpret ABG,Lawrence Martin,MD,2nd edition

COMPONENTS OF THE ABG

pH: Measurement of acidity or alkalinity, based on the hydrogen (H+) 7.35 – 7.45

Pao₂ The partial pressure oxygen that is dissolved in arterial blood. 80-100 mm Hg.

PCO₂: The amount of carbon dioxide dissolved in arterial blood. 35–45 mmHg

HCO₃

The calculated value of the amount of bicarbonate in the blood 22 – 26 mmol/L

B.E:

The base excess indicates the amount of excess or insufficient level of bicarbonate. -2 to +2mEq/L (A negative base excess indicates a base deficit in blood)

SaO_{2:}The arterial oxygen saturation. >95%

>There are two buffers that work in pairs

≻H₂CO₃ NaHCO₃
Carbonic acid base bicarbonate

These buffers are linked to the respiratory and renal compensatory system

Review of medical physiology, William F.GANONG, 21st edition

BASE EXCESS

 It is an estimate of the amount of strong acid or base needed to correct the metabolic. component of an acid base disorder (restore plasma pH to 7.40at a PaCo₂ 40 mmHg)

Formula

 With the base excess is -10 in a 50kg person with metabolic acidosis mM of Hco₃ needed for correction is:

= 0.3 X body weight X BE = 0.3 X 50 X10 = 150 mM

Anion GAP

AG = (Na+ + K+) – (cl- + Hco3-)
* A change in the pH of 0.08 for each 10 mm Hg indicates an ACUTE condition.
* A change in the pH of 0.03 for each 10 mm Hg indicates a CHRONIC condition.

