
Subject: Introduction to DBMS

Subject Code: BCA501N

UNIT-I

Introduction

Database is a collection of inter-related data which helps in efficient retrieval, insertion and

deletion of data from database and organizes the data in the form of tables, views, schemas,

reports etc. For Example, university database organizes the data about students, faculty, and

admin staff etc. which helps in efficient retrieval, insertion and deletion of data from it.

DBMS stands for Database Management System. We can break it like this DBMS =

Database + Management System. Database is a collection of data and Management System is

a set of programs to store and retrieve those data. Based on this we can define DBMS like

this: DBMS is a collection of inter-related data and set of programs to store & access those

data in an easy and effective manner.

What is the need of DBMS?

Database systems are basically developed for large amount of data. When dealing with huge

amount of data, there are two things that require optimization: Storage of data and retrieval

of data.

Storage: According to the principles of database systems, the data is stored in such a way

that it acquires lot less space as the redundant data (duplicate data) has been removed before

storage. In a banking system, suppose a customer is having two accounts, one is saving

account and another is salary account. Let’s say bank stores saving account data at one place

(these places are called tables we will learn them later) and salary account data at another

place, in that case if the customer information such as customer name, address etc. are stored

at both places then this is just a wastage of storage (redundancy/ duplication of data), to

organize the data in a better way the information should be stored at one place and both the

accounts should be linked to that information somehow. The same thing we achieve in

DBMS.

Fast Retrieval of data: Along with storing the data in an optimized and systematic manner,

it is also important that we retrieve the data quickly when needed. Database systems ensure

that the data is retrieved as quickly as possible.

Characteristics of database approach

Database is a collection of related data and data is a collection of facts and figures that can

be processed to produce information.

Mostly data represents recordable facts. Data aids in producing information, which is based

on facts. For example, if we have data about marks obtained by all students, we can then

conclude about toppers and average marks.

A database management system stores data in such a way that it becomes easier to retrieve,

manipulate, and produce information.

Characteristics

Traditionally, data was organized in file formats. DBMS was a new concept then, and all the

research was done to make it overcome the deficiencies in traditional style of data

management. A modern DBMS has the following characteristics −

 Real-world entity − A modern DBMS is more realistic and uses real-world entities to

design its architecture. It uses the behavior and attributes too. For example, a school

database may use students as an entity and their age as an attribute.

 Relation-based tables − DBMS allows entities and relations among them to form

tables. A user can understand the architecture of a database just by looking at the table

names.

 Isolation of data and application − A database system is entirely different than its

data. A database is an active entity, whereas data is said to be passive, on which the

database works and organizes. DBMS also stores metadata, which is data about data,

to ease its own process.

 Less redundancy − DBMS follows the rules of normalization, which splits a relation

when any of its attributes is having redundancy in values. Normalization is a

mathematically rich and scientific process that reduces data redundancy.

 Consistency − Consistency is a state where every relation in a database remains

consistent. There exist methods and techniques, which can detect attempt of leaving

database in inconsistent state. A DBMS can provide greater consistency as compared

to earlier forms of data storing applications like file-processing systems.

 Query Language − DBMS is equipped with query language, which makes it more

efficient to retrieve and manipulate data. A user can apply as many and as different

filtering options as required to retrieve a set of data. Traditionally it was not possible

where file-processing system was used.

 ACID Properties − DBMS follows the concepts

of Atomicity, Consistency, Isolation, and Durability (normally shortened as ACID).

These concepts are applied on transactions, which manipulate data in a database.

ACID properties help the database stay healthy in multi-transactional environments

and in case of failure.

 Multiuser and Concurrent Access − DBMS supports multi-user environment and

allows them to access and manipulate data in parallel. Though there are restrictions on

transactions when users attempt to handle the same data item, but users are always

unaware of them.

 Multiple views − DBMS offers multiple views for different users. A user who is in

the Sales department will have a different view of database than a person working in

the Production department. This feature enables the users to have a concentrate view

of the database according to their requirements.

 Security − Features like multiple views offer security to some extent where users are

unable to access data of other users and departments. DBMS offers methods to

impose constraints while entering data into the database and retrieving the same at a

later stage. DBMS offers many different levels of security features, which enables

multiple users to have different views with different features. For example, a user in

the Sales department cannot see the data that belongs to the Purchase department.

Additionally, it can also be managed how much data of the Sales department should

be displayed to the user. Since a DBMS is not saved on the disk as traditional file

systems, it is very hard for miscreants to break the code.

Users

A typical DBMS has users with different rights and permissions who use it for different

purposes. Some users retrieve data and some back it up. The users of a DBMS can be broadly

categorized as follows −

 Administrators − Administrators maintain the DBMS and are responsible for

administrating the database. They are responsible to look after its usage and by whom

it should be used. They create access profiles for users and apply limitations to

maintain isolation and force security. Administrators also look after DBMS resources

like system license, required tools, and other software and hardware related

maintenance.

 Designers − Designers are the group of people who actually work on the designing

part of the database. They keep a close watch on what data should be kept and in what

format. They identify and design the whole set of entities, relations, constraints, and

views.

 End Users − End users are those who actually reap the benefits of having a DBMS.

End users can range from simple viewers who pay attention to the logs or market rates

to sophisticated users such as business analysts.

Data Models

A Database model defines the logical design and structure of a database and defines how data

will be stored, accessed and updated in a database management system. While the Relational

Model is the most widely used database model, there are other models too:

 Hierarchical Model

 Network Model

 Entity-relationship Model

 Relational Model

Hierarchical Model

This database model organises data into a tree-like-structure, with a single root, to which all

the other data is linked. The heirarchy starts from the Root data, and expands like a tree,

adding child nodes to the parent nodes.

In this model, a child node will only have a single parent node.

This model efficiently describes many real-world relationships like index of a book, recipes

etc.

In hierarchical model, data is organised into tree-like structure with one one-to-many

relationship between two different types of data, for example, one department can have many

courses, many professors and of-course many students.

Network Model

This is an extension of the Hierarchical model. In this model data is organised more like a

graph, and are allowed to have more than one parent node.

In this database model data is more related as more relationships are established in this

database model. Also, as the data is more related, hence accessing the data is also easier and

fast. This database model was used to map many-to-many data relationships.

This was the most widely used database model, before Relational Model was introduced.

Entity-relationship Model

In this database model, relationships are created by dividing object of interest into entity and

its characteristics into attributes.

Different entities are related using relationships.

E-R Models are defined to represent the relationships into pictorial form to make it easier for

different stakeholders to understand.

This model is good to design a database, which can then be turned into tables in relational

model.Let's take an example, If we have to design a School Database, then Student will be

an entity with attributes name, age, address etc. As Address is generally complex, it can be

another entity with attributes street name, pincode, city etc, and there will be a relationship

between them. Relationships can also be of different types.

Relational Model

In this model, data is organised in two-dimensional tables and the relationship is maintained

by storing a common field.

This model was introduced by E.F Codd in 1970, and since then it has been the most widely

used database model, infact, we can say the only database model used around the world.

The basic structure of data in the relational model is tables. All the information related to a

particular type is stored in rows of that table.

Hence, tables are also known as relations in relational model.

DBMS architecture

The design of a DBMS depends on its architecture. It can be centralized or decentralized or

hierarchical. The architecture of a DBMS can be seen as either single tier or multi-tier. An n-

tier architecture divides the whole system into related but independent n modules, which can

be independently modified, altered, changed, or replaced.

In 1-tier architecture, the DBMS is the only entity where the user directly sits on the DBMS

and uses it. Any changes done here will directly be done on the DBMS itself. It does not

provide handy tools for end-users. Database designers and programmers normally prefer to

use single-tier architecture.

If the architecture of DBMS is 2-tier, then it must have an application through which the

DBMS can be accessed. Programmers use 2-tier architecture where they access the DBMS by

means of an application. Here the application tier is entirely independent of the database in

terms of operation, design, and programming.

3-tier Architecture

A 3-tier architecture separates its tiers from each other based on the complexity of the users

and how they use the data present in the database. It is the most widely used architecture to

design a DBMS.

 Database (Data) Tier − At this tier, the database resides along with its query

processing languages. We also have the relations that define the data and their

constraints at this level.

 Application (Middle) Tier − At this tier reside the application server and the

programs that access the database. For a user, this application tier presents an

abstracted view of the database. End-users are unaware of any existence of the

database beyond the application. At the other end, the database tier is not aware of

any other user beyond the application tier. Hence, the application layer sits in the

middle and acts as a mediator between the end-user and the database.

 User (Presentation) Tier − End-users operate on this tier and they know nothing

about any existence of the database beyond this layer. At this layer, multiple views of

the database can be provided by the application. All views are generated by

applications that reside in the application tier.

Multiple-tier database architecture is highly modifiable, as almost all its components are

independent and can be changed independently.

Data Independence

If a database system is not multi-layered, then it becomes difficult to make any changes in the

database system. Database systems are designed in multi-layers as we learnt earlier.

A database system normally contains a lot of data in addition to users’ data. For example, it

stores data about data, known as metadata, to locate and retrieve data easily. It is rather

difficult to modify or update a set of metadata once it is stored in the database. But as a

DBMS expands, it needs to change over time to satisfy the requirements of the users. If the

entire data is dependent, it would become a tedious and highly complex job.

Metadata itself follows a layered architecture, so that when we change data at one layer, it

does not affect the data at another level. This data is independent but mapped to each other.

Logical Data Independence

Logical data is data about database, that is, it stores information about how data is managed

inside. For example, a table (relation) stored in the database and all its constraints, applied on

that relation.

Logical data independence is a kind of mechanism, which liberalizes itself from actual data

stored on the disk. If we do some changes on table format, it should not change the data

residing on the disk.

Physical Data Independence

All the schemas are logical, and the actual data is stored in bit format on the disk. Physical

data independence is the power to change the physical data without impacting the schema or

logical data.

For example, in case we want to change or upgrade the storage system itself − suppose we

want to replace hard-disks with SSD − it should not have any impact on the logical data or

schemas.

UNIT-II

E-R Modeling

The ER model defines the conceptual view of a database. It works around real-world entities

and the associations among them. At view level, the ER model is considered a good option

for designing databases.

Entity

An entity can be a real-world object, either animate or inanimate, that can be easily

identifiable. For example, in a school database, students, teachers, classes, and courses

offered can be considered as entities. All these entities have some attributes or properties that

give them their identity.

An entity set is a collection of similar types of entities. An entity set may contain entities with

attribute sharing similar values. For example, a Students set may contain all the students of a

school; likewise a Teachers set may contain all the teachers of a school from all faculties.

Entity sets need not be disjoint.

Attributes

Entities are represented by means of their properties, called attributes. All attributes have

values. For example, a student entity may have name, class, and age as attributes.

There exists a domain or range of values that can be assigned to attributes. For example, a

student's name cannot be a numeric value. It has to be alphabetic. A student's age cannot be

negative, etc.

Types of Attributes

 Simple attribute − Simple attributes are atomic values, which cannot be divided

further. For example, a student's phone number is an atomic value of 10 digits.

 Composite attribute − Composite attributes are made of more than one simple

attribute. For example, a student's complete name may have first_name and

last_name.

 Derived attribute − Derived attributes are the attributes that do not exist in the

physical database, but their values are derived from other attributes present in the

database. For example, average_salary in a department should not be saved directly in

the database, instead it can be derived. For another example, age can be derived from

data_of_birth.

 Single-value attribute − Single-value attributes contain single value. For example −

Social_Security_Number.

 Multi-value attribute − Multi-value attributes may contain more than one values.

For example, a person can have more than one phone number, email_address, etc.

Entity-Set and Keys

Key is an attribute or collection of attributes that uniquely identifies an entity among entity

set.

For example, the roll_number of a student makes him/her identifiable among students.

 Super Key − A set of attributes (one or more) that collectively identifies an entity in

an entity set.

 Candidate Key − A minimal super key is called a candidate key. An entity set may

have more than one candidate key.

 Primary Key − A primary key is one of the candidate keys chosen by the database

designer to uniquely identify the entity set.

Relationship

The association among entities is called a relationship. For example, an employee works_at a

department, a student enrolls in a course. Here, Works_at and Enrolls are called

relationships.

Relationship Set

A set of relationships of similar type is called a relationship set. Like entities, a relationship

too can have attributes. These attributes are called descriptive attributes.

Degree of Relationship

The number of participating entities in a relationship defines the degree of the relationship.

 Binary = degree 2

 Ternary = degree 3

 n-ary = degree n

Mapping Cardinalities

Cardinality defines the number of entities in one entity set, which can be associated with the

number of entities of other set via relationship set.

 One-to-one − One entity from entity set A can be associated with at most one entity

of entity set B and vice versa.

 One-to-many − One entity from entity set A can be associated with more than one

entities of entity set B however an entity from entity set B, can be associated with at

most one entity.

 Many-to-one − More than one entities from entity set A can be associated with at

most one entity of entity set B, however an entity from entity set B can be associated

with more than one entity from entity set A.

 Many-to-many − One entity from A can be associated with more than one entity

from B and vice versa.

ER Diagram Representation

Entity

Entities are represented by means of rectangles. Rectangles are named with the entity set they

represent.

Attributes

Attributes are the properties of entities. Attributes are represented by means of ellipses. Every

ellipse represents one attribute and is directly connected to its entity (rectangle).

If the attributes are composite, they are further divided in a tree like structure. Every node is

then connected to its attribute. That is, composite attributes are represented by ellipses that

are connected with an ellipse.

Multivalued attributes are depicted by double ellipse.

Derived attributes are depicted by dashed ellipse.

Relationship

Relationships are represented by diamond-shaped box. Name of the relationship is written

inside the diamond-box. All the entities (rectangles) participating in a relationship, are

connected to it by a line.

Binary Relationship and Cardinality

A relationship where two entities are participating is called a binary relationship.

Cardinality is the number of instance of an entity from a relation that can be associated with

the relation.

 One-to-one − When only one instance of an entity is associated with the relationship,

it is marked as '1:1'. The following image reflects that only one instance of each entity

should be associated with the relationship. It depicts one-to-one relationship.

 One-to-many − When more than one instance of an entity is associated with a

relationship, it is marked as '1:N'. The following image reflects that only one instance

of entity on the left and more than one instance of an entity on the right can be

associated with the relationship. It depicts one-to-many relationship.

 Many-to-one − When more than one instance of entity is associated with the

relationship, it is marked as 'N:1'. The following image reflects that more than one

instance of an entity on the left and only one instance of an entity on the right can be

associated with the relationship. It depicts many-to-one relationship.

 Many-to-many − The following image reflects that more than one instance of an

entity on the left and more than one instance of an entity on the right can be

associated with the relationship. It depicts many-to-many relationship.

Participation Constraints

 Total Participation − Each entity is involved in the relationship. Total participation

is represented by double lines.

 Partial participation − Not all entities are involved in the relationship. Partial

participation is represented by single lines.

Generalization, Specialization and Inheritance

The ER Model has the power of expressing database entities in a conceptual hierarchical

manner. As the hierarchy goes up, it generalizes the view of entities, and as we go deep in the

hierarchy, it gives us the detail of every entity included.

Going up in this structure is called generalization, where entities are clubbed together to

represent a more generalized view. For example, a particular student named Mira can be

generalized along with all the students. The entity shall be a student, and further, the student

is a person. The reverse is called specialization where a person is a student, and that student

is Mira.

Generalization

The process of generalizing entities, where the generalized entities contain the properties of

all the generalized entities, is called generalization. In generalization, a number of entities are

brought together into one generalized entity based on their similar characteristics. For

example, pigeon, house sparrow, crow and dove can all be generalized as Birds.

Specialization

Specialization is the opposite of generalization. In specialization, a group of entities is

divided into sub-groups based on their characteristics. Take a group ‘Person’ for example. A

person has name, date of birth, gender, etc. These properties are common in all persons,

human beings. But in a company, persons can be identified as employee, employer, customer,

or vendor, based on what role they play in the company.

Similarly, in a school database, persons can be specialized as teacher, student, or a staff,

based on what role they play in school as entities.

Inheritance

We use all the above features of ER-Model in order to create classes of objects in object-

oriented programming. The details of entities are generally hidden from the user; this process

known as abstraction.

Inheritance is an important feature of Generalization and Specialization. It allows lower-level

entities to inherit the attributes of higher-level entities.

For example, the attributes of a Person class such as name, age, and gender can be inherited

by lower-level entities such as Student or Teacher.

References:

[1] https://www.tutorialspoint.com/dbms/dbms_overview.htm

[2] https://www.studytonight.com/dbms/database-model.php

