
BCA501N

Unit-III

File Organization

File Organization

o The File is a collection of records. Using the primary key, we can access the records. The type

and frequency of access can be determined by the type of file organization which was used

for a given set of records.

o File organization is a logical relationship among various records. This method defines how

file records are mapped onto disk blocks.

o File organization is used to describe the way in which the records are stored in terms of

blocks, and the blocks are placed on the storage medium.

o The first approach to map the database to the file is to use the several files and store only

one fixed length record in any given file. An alternative approach is to structure our files so

that we can contain multiple lengths for records.

o Files of fixed length records are easier to implement than the files of variable length records.

Objective of file organization

o It contains an optimal selection of records, i.e., records can be selected as fast as possible.

o To perform insert, delete or update transaction on the records should be quick and easy.

o The duplicate records cannot be induced as a result of insert, update or delete.

o For the minimal cost of storage, records should be stored efficiently.

Types of file organization:

File organization contains various methods. These particular methods have pros and cons on the

basis of access or selection. In the file organization, the programmer decides the best-suited file

organization method according to his requirement. Types of file organization are as follows:

Sequential File Organization

This method is the easiest method for file organization. In this method, files are stored

sequentially. This method can be implemented in two ways:

1. Pile File Method:

o It is a quite simple method. In this method, we store the record in a sequence, i.e., one

after another. Here, the record will be inserted in the order in which they are inserted

into tables.

o In case of updating or deleting of any record, the record will be searched in the

memory blocks. When it is found, then it will be marked for deleting, and the new

record is inserted.

Insertion of the new record:

Suppose we have four records R1, R3 and so on upto R9 and R8 in a sequence. Hence,

records are nothing but a row in the table. Suppose we want to insert a new record R2 in the

sequence, then it will be placed at the end of the file. Here, records are nothing but a row in

any table.

2. Sorted File Method:

o In this method, the new record is always inserted at the file's end, and then it will sort

the sequence in ascending or descending order. Sorting of records is based on any

primary key or any other key.

o In the case of modification of any record, it will update the record and then sort the

file, and lastly, the updated record is placed in the right place.

Insertion of the new record:

Suppose there is a preexisting sorted sequence of four records R1, R3 and so on upto R6 and

R7. Suppose a new record R2 has to be inserted in the sequence, then it will be inserted at the

end of the file, and then it will sort the sequence.

Pros of sequential file organization

o It contains a fast and efficient method for the huge amount of data.

o In this method, files can be easily stored in cheaper storage mechanism like magnetic

tapes.

o It is simple in design. It requires no much effort to store the data.

o This method is used when most of the records have to be accessed like grade

calculation of a student, generating the salary slip, etc.

o This method is used for report generation or statistical calculations.

Cons of sequential file organization

o It will waste time as we cannot jump on a particular record that is required but we

have to move sequentially which takes our time.

o Sorted file method takes more time and space for sorting the records.

Indexed sequential access method (ISAM)

ISAM method is an advanced sequential file organization. In this method, records are stored

in the file using the primary key. An index value is generated for each primary key and

mapped with the record. This index contains the address of the record in the file.

If any record has to be retrieved based on its index value, then the address of the data block is

fetched and the record is retrieved from the memory.

Pros of ISAM:

o In this method, each record has the address of its data block, searching a record in a

huge database is quick and easy.

o This method supports range retrieval and partial retrieval of records. Since the index

is based on the primary key values, we can retrieve the data for the given range of

value. In the same way, the partial value can also be easily searched, i.e., the student

name starting with 'JA' can be easily searched.

Cons of ISAM

o This method requires extra space in the disk to store the index value.

o When the new records are inserted, then these files have to be reconstructed to

maintain the sequence.

o When the record is deleted, then the space used by it needs to be released. Otherwise,

the performance of the database will slow down.

Introduction of B-Tree

B Tree

B Tree is a specialized m-way tree that can be widely used for disk access. A B-Tree of order

m can have at most m-1 keys and m children. One of the main reasons of using B tree is its

capability to store large number of keys in a single node and large key values by keeping the

height of the tree relatively small.

A B tree of order m contains all the properties of an M way tree. In addition, it contains the

following properties.

1. Every node in a B-Tree contains at most m children.

2. Every node in a B-Tree except the root node and the leaf node contain at least m/2

children.

3. The root nodes must have at least 2 nodes.

4. All leaf nodes must be at the same level.

It is not necessary that, all the nodes contain the same number of children but, each node

must have m/2 number of nodes.

A B tree of order 4 is shown in the following image.

While performing some operations on B Tree, any property of B Tree may violate such as

number of minimum children a node can have. To maintain the properties of B Tree, the tree

may split or join.

Operations

Searching :

Searching in B Trees is similar to that in Binary search tree. For example, if we search for an

item 49 in the following B Tree. The process will something like following :

1. Compare item 49 with root node 78. since 49 < 78 hence, move to its left sub-tree.

2. Since, 40<49<56, traverse right sub-tree of 40.

3. 49>45, move to right. Compare 49.

4. match found, return.

Searching in a B tree depends upon the height of the tree. The search algorithm takes O(log

n) time to search any element in a B tree.

Inserting

Insertions are done at the leaf node level. The following algorithm needs to be followed in

order to insert an item into B Tree.

1. Traverse the B Tree in order to find the appropriate leaf node at which the node can

be inserted.

2. If the leaf node contain less than m-1 keys then insert the element in the increasing

order.

3. Else, if the leaf node contains m-1 keys, then follow the following steps.

o Insert the new element in the increasing order of elements.

o Split the node into the two nodes at the median.

o Push the median element upto its parent node.

o If the parent node also contain m-1 number of keys, then split it too by

following the same steps.

Example:

Insert the node 8 into the B Tree of order 5 shown in the following image.

8 will be inserted to the right of 5, therefore insert 8.

The node, now contain 5 keys which is greater than (5 -1 = 4) keys. Therefore split the node

from the median i.e. 8 and push it up to its parent node shown as follows.

Deletion

Deletion is also performed at the leaf nodes. The node which is to be deleted can either be a

leaf node or an internal node. Following algorithm needs to be followed in order to delete a

node from a B tree.

1. Locate the leaf node.

2. If there are more than m/2 keys in the leaf node then delete the desired key from the

node.

3. If the leaf node doesn't contain m/2 keys then complete the keys by taking the element

from right or left sibling.

o If the left sibling contains more than m/2 elements then push its largest

element up to its parent and move the intervening element down to the node

where the key is deleted.

o If the right sibling contains more than m/2 elements then push its smallest

element up to the parent and move intervening element down to the node

where the key is deleted.

4. If neither of the sibling contain more than m/2 elements then create a new leaf node

by joining two leaf nodes and the intervening element of the parent node.

5. If parent is left with less than m/2 nodes then, apply the above process on the parent

too.

If the node which is to be deleted is an internal node, then replace the node with its in-order

successor or predecessor. Since, successor or predecessor will always be on the leaf node

hence, the process will be similar as the node is being deleted from the leaf node.

Example 1

Delete the node 53 from the B Tree of order 5 shown in the following figure.

53 is present in the right child of element 49. Delete it.

Now, 57 is the only element which is left in the node, the minimum number of elements that

must be present in a B tree of order 5, is 2. it is less than that, the elements in its left and right

sub-tree are also not sufficient therefore, merge it with the left sibling and intervening

element of parent i.e. 49.

The final B tree is shown as follows.

Application of B tree

B tree is used to index the data and provides fast access to the actual data stored on the disks

since, the access to value stored in a large database that is stored on a disk is a very time

consuming process.

Searching an un-indexed and unsorted database containing n key values needs O(n) running

time in worst case. However, if we use B Tree to index this database, it will be searched in

O(log n) time in worst case.

Introduction of B+ Tree

B+ Tree

o The B+ tree is a balanced binary search tree. It follows a multi-level index format.

o In the B+ tree, leaf nodes denote actual data pointers. B+ tree ensures that all leaf

nodes remain at the same height.

o In the B+ tree, the leaf nodes are linked using a link list. Therefore, a B+ tree can

support random access as well as sequential access.

Structure of B+ Tree

o In the B+ tree, every leaf node is at equal distance from the root node. The B+ tree is

of the order n where n is fixed for every B+ tree.

o It contains an internal node and leaf node.

Internal node

o An internal node of the B+ tree can contain at least n/2 record pointers except the root

node.

o At most, an internal node of the tree contains n pointers.

Leaf node

o The leaf node of the B+ tree can contain at least n/2 record pointers and n/2 key

values.

o At most, a leaf node contains n record pointer and n key values.

o Every leaf node of the B+ tree contains one block pointer P to point to next leaf node.

Searching a record in B+ Tree

Suppose we have to search 55 in the below B+ tree structure. First, we will fetch for the

intermediary node which will direct to the leaf node that can contain a record for 55.

So, in the intermediary node, we will find a branch between 50 and 75 nodes. Then at the

end, we will be redirected to the third leaf node. Here DBMS will perform a sequential search

to find 55.

B+ Tree Insertion

Suppose we want to insert a record 60 in the below structure. It will go to the 3rd leaf node

after 55. It is a balanced tree, and a leaf node of this tree is already full, so we cannot insert

60 there.

In this case, we have to split the leaf node, so that it can be inserted into tree without affecting

the fill factor, balance and order.

The 3
rd

 leaf node has the values (50, 55, 60, 65, 70) and its current root node is 50. We will

split the leaf node of the tree in the middle so that its balance is not altered. So we can group

(50, 55) and (60, 65, 70) into 2 leaf nodes.

If these two has to be leaf nodes, the intermediate node cannot branch from 50. It should have

60 added to it, and then we can have pointers to a new leaf node.

This is how we can insert an entry when there is overflow. In a normal scenario, it is very

easy to find the node where it fits and then place it in that leaf node.

B+ Tree Deletion

Suppose we want to delete 60 from the above example. In this case, we have to remove 60

from the intermediate node as well as from the 4th leaf node too. If we remove it from the

intermediate node, then the tree will not satisfy the rule of the B+ tree. So we need to modify

it to have a balanced tree.

After deleting node 60 from above B+ tree and re-arranging the nodes, it will show as

follows:

Hashing

In a huge database structure, it is very inefficient to search all the index values and reach the

desired data. Hashing technique is used to calculate the direct location of a data record on the

disk without using index structure.

In this technique, data is stored at the data blocks whose address is generated by using the

hashing function. The memory location where these records are stored is known as data

bucket or data blocks.

In this, a hash function can choose any of the column value to generate the address. Most of

the time, the hash function uses the primary key to generate the address of the data block. A

hash function is a simple mathematical function to any complex mathematical function. We

can even consider the primary key itself as the address of the data block. That means each

row whose address will be the same as a primary key stored in the data block.

The above diagram shows data block addresses same as primary key value. This hash

function can also be a simple mathematical function like exponential, mod, cos, sin, etc.

Suppose we have mod (5) hash function to determine the address of the data block. In this

case, it applies mod (5) hash function on the primary keys and generates 3, 3, 1, 4 and 2

respectively, and records are stored in those data block addresses.

Types of Hashing:

Static Hashing

In static hashing, the resultant data bucket address will always be the same. That means if we

generate an address for EMP_ID =103 using the hash function mod (5) then it will always

result in same bucket address 3. Here, there will be no change in the bucket address.

Hence in this static hashing, the number of data buckets in memory remains constant

throughout. In this example, we will have five data buckets in the memory used to store the

data.

Operations of Static Hashing

o Searching a record

When a record needs to be searched, then the same hash function retrieves the address of the

bucket where the data is stored.

o Insert a Record

When a new record is inserted into the table, then we will generate an address for a new

record based on the hash key and record is stored in that location.

o Delete a Record

To delete a record, we will first fetch the record which is supposed to be deleted. Then we

will delete the records for that address in memory.

o Update a Record

To update a record, we will first search it using a hash function, and then the data record is

updated.

If we want to insert some new record into the file but the address of a data bucket generated

by the hash function is not empty, or data already exists in that address. This situation in the

static hashing is known as bucket overflow. This is a critical situation in this method.

To overcome this situation, there are various methods. Some commonly used methods are as

follows:

1. Open Hashing

When a hash function generates an address at which data is already stored, then the next

bucket will be allocated to it. This mechanism is called as Linear Probing.

For example: suppose R3 is a new address which needs to be inserted, the hash function

generates address as 112 for R3. But the generated address is already full. So the system

searches next available data bucket, 113 and assigns R3 to it.

2. Close Hashing

When buckets are full, then a new data bucket is allocated for the same hash result and is

linked after the previous one. This mechanism is known as Overflow chaining.

For example: Suppose R3 is a new address which needs to be inserted into the table, the

hash function generates address as 110 for it. But this bucket is full to store the new data. In

this case, a new bucket is inserted at the end of 110 buckets and is linked to it.

Dynamic Hashing

o The dynamic hashing method is used to overcome the problems of static hashing like

bucket overflow.

o In this method, data buckets grow or shrink as the records increases or decreases. This

method is also known as Extendable hashing method.

o This method makes hashing dynamic, i.e., it allows insertion or deletion without

resulting in poor performance.

How to search a key

o First, calculate the hash address of the key.

o Check how many bits are used in the directory, and these bits are called as i.

o Take the least significant i bits of the hash address. This gives an index of the

directory.

o Now using the index, go to the directory and find bucket address where the record

might be.

How to insert a new record

o Firstly, you have to follow the same procedure for retrieval, ending up in some

bucket.

o If there is still space in that bucket, then place the record in it.

o If the bucket is full, then we will split the bucket and redistribute the records.

For example:

Consider the following grouping of keys into buckets, depending on the prefix of their hash

address:

The last two bits of 2 and 4 are 00. So it will go into bucket B0. The last two bits of 5 and 6

are 01, so it will go into bucket B1. The last two bits of 1 and 3 are 10, so it will go into

bucket B2. The last two bits of 7 are 11, so it will go into B3.

Insert key 9 with hash address 10001 into the above structure:

o Since key 9 has hash address 10001, it must go into the first bucket. But bucket B1 is

full, so it will get split.

o The splitting will separate 5, 9 from 6 since last three bits of 5, 9 are 001, so it will go

into bucket B1, and the last three bits of 6 are 101, so it will go into bucket B5.

o Keys 2 and 4 are still in B0. The record in B0 pointed by the 000 and 100 entry

because last two bits of both the entry are 00.

o Keys 1 and 3 are still in B2. The record in B2 pointed by the 010 and 110 entry

because last two bits of both the entry are 10.

o Key 7 are still in B3. The record in B3 pointed by the 111 and 011 entry because last

two bits of both the entry are 11.

Advantages of dynamic hashing

o In this method, the performance does not decrease as the data grows in the system. It

simply increases the size of memory to accommodate the data.

o In this method, memory is well utilized as it grows and shrinks with the data. There

will not be any unused memory lying.

o This method is good for the dynamic database where data grows and shrinks

frequently.

Disadvantages of dynamic hashing

o In this method, if the data size increases then the bucket size is also increased. These

addresses of data will be maintained in the bucket address table. This is because the

data address will keep changing as buckets grow and shrink. If there is a huge

increase in data, maintaining the bucket address table becomes tedious.

o In this case, the bucket overflow situation will also occur. But it might take little time

to reach this situation than static hashing.

Unit–IV

Relational Data Model

Relational Model concept

Relational model can represent as a table with columns and rows. Each row is known as a

tuple. Each table of the column has a name or attribute.

Domain: It contains a set of atomic values that an attribute can take.

Attribute: It contains the name of a column in a particular table. Each attribute Ai must have

a domain, dom(Ai)

Relational instance: In the relational database system, the relational instance is represented

by a finite set of tuples. Relation instances do not have duplicate tuples.

Relational schema: A relational schema contains the name of the relation and name of all

columns or attributes.

Relational key: In the relational key, each row has one or more attributes. It can identify the

row in the relation uniquely.

Example: STUDENT Relation

NAME ROLL_NO PHONE_NO ADDRESS AGE

Ram 14795 7305758992 Noida 24

Shyam 12839 9026288936 Delhi 35

Laxman 33289 8583287182 Gurugram 20

Mahesh 27857 7086819134 Ghaziabad 27

Ganesh 17282 9028 9i3988 Delhi 40

o In the given table, NAME, ROLL_NO, PHONE_NO, ADDRESS, and AGE are the

attributes.

o The instance of schema STUDENT has 5 tuples.

o t3 = <Laxman, 33289, 8583287182, Gurugram, 20>

Properties of Relations

o Name of the relation is distinct from all other relations.

o Each relation cell contains exactly one atomic (single) value

o Each attribute contains a distinct name

o Attribute domain has no significance

o tuple has no duplicate value

o Order of tuple can have a different sequence

Relational Algebra

Relational algebra is a procedural query language. It gives a step by step process to obtain the

result of the query. It uses operators to perform queries.

Types of Relational operation

1. Select Operation:

o The select operation selects tuples that satisfy a given predicate.

o It is denoted by sigma (σ).

1. Notation: σ p(r)

Where:

σ is used for selection prediction

r is used for relation

p is used as a propositional logic formula which may use connectors like: AND OR and

NOT. These relational can use as relational operators like =, ≠, ≥, <, >, ≤.

For example: LOAN Relation

BRANCH_NAME LOAN_NO AMOUNT

Downtown L-17 1000

Redwood L-23 2000

Perryride L-15 1500

Downtown L-14 1500

Mianus L-13 500

Roundhill L-11 900

Perryride L-16 1300

Input:

σ BRANCH_NAME="perryride" (LOAN)

Output:

BRANCH_NAME LOAN_NO AMOUNT

Perryride L-15 1500

Perryride L-16 1300

2. Project Operation:

o This operation shows the list of those attributes that we wish to appear in the result.

Rest of the attributes are eliminated from the table.

o It is denoted by ∏.

Notation: ∏ A1, A2, An (r)

Where

A1, A2, A3 is used as an attribute name of relation r.

Example: CUSTOMER RELATION

NAME STREET CITY

Jones Main Harrison

Smith North Rye

Hays Main Harrison

Curry North Rye

Johnson Alma Brooklyn

Brooks Senator Brooklyn

Input:

∏ NAME, CITY (CUSTOMER)

Output:

NAME CITY

Jones Harrison

Smith Rye

Hays Harrison

Curry Rye

Johnson Brooklyn

Brooks Brooklyn

3. Union Operation:

o Suppose there are two tuples R and S. The union operation contains all the tuples that

are either in R or S or both in R & S.

o It eliminates the duplicate tuples. It is denoted by ∪.

Notation: R ∪ S

A union operation must hold the following condition:

o R and S must have the attribute of the same number.

o Duplicate tuples are eliminated automatically.

Example:

DEPOSITOR RELATION

CUSTOMER_NAME ACCOUNT_NO

Johnson A-101

Smith A-121

Mayes A-321

Turner A-176

Johnson A-273

Jones A-472

Lindsay A-284

BORROW RELATION

CUSTOMER_NAME LOAN_NO

Jones L-17

Smith L-23

Hayes L-15

Jackson L-14

Curry L-93

Smith L-11

Williams L-17

Input:

∏ CUSTOMER_NAME (BORROW) ∪ ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Johnson

Smith

Hayes

Turner

Jones

Lindsay

Jackson

Curry

Williams

Mayes

4. Set Intersection:

o Suppose there are two tuples R and S. The set intersection operation contains all

tuples that are in both R & S.

o It is denoted by intersection ∩.

Notation: R ∩ S

Example: Using the above DEPOSITOR table and BORROW table

Input:

∏ CUSTOMER_NAME (BORROW) ∩ ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Smith

Jones

5. Set Difference:

o Suppose there are two tuples R and S. The set intersection operation contains all

tuples that are in R but not in S.

o It is denoted by intersection minus (-).

Notation: R - S

Example: Using the above DEPOSITOR table and BORROW table

Input:

∏ CUSTOMER_NAME (BORROW) - ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Jackson

Hayes

Willians

Curry

6. Cartesian product

o The Cartesian product is used to combine each row in one table with each row in the

other table. It is also known as a cross product.

o It is denoted by X.

Notation: E X D

Example:

EMPLOYEE

EMP_ID EMP_NAME EMP_DEPT

1 Smith A

2 Harry C

3 John B

DEPARTMENT

DEPT_NO DEPT_NAME

A Marketing

B Sales

C Legal

Input:

EMPLOYEE X DEPARTMENT

Output:

EMP_ID EMP_NAME EMP_DEPT DEPT_NO DEPT_NAME

1 Smith A A Marketing

1 Smith A B Sales

1 Smith A C Legal

2 Harry C A Marketing

2 Harry C B Sales

2 Harry C C Legal

3 John B A Marketing

3 John B B Sales

3 John B C Legal

7. Rename Operation:

The rename operation is used to rename the output relation. It is denoted by rho (ρ).

Example: We can use the rename operator to rename STUDENT relation to STUDENT1.

ρ(STUDENT1, STUDENT)

Integrity Constraints

o Integrity constraints are a set of rules. It is used to maintain the quality of information.

o Integrity constraints ensure that the data insertion, updating, and other processes have

to be performed in such a way that data integrity is not affected.

o Thus, integrity constraint is used to guard against accidental damage to the database.

Types of Integrity Constraint

1. Domain constraints

o Domain constraints can be defined as the definition of a valid set of values for an

attribute.

o The data type of domain includes string, character, integer, time, date, currency, etc.

The value of the attribute must be available in the corresponding domain.

Example:

2. Entity integrity constraints

o The entity integrity constraint states that primary key value can't be null.

o This is because the primary key value is used to identify individual rows in relation

and if the primary key has a null value, then we can't identify those rows.

o A table can contain a null value other than the primary key field.

Example:

3. Referential Integrity Constraints

o A referential integrity constraint is specified between two tables.

o In the Referential integrity constraints, if a foreign key in Table 1 refers to the

Primary Key of Table 2, then every value of the Foreign Key in Table 1 must be null

or be available in Table 2.

Example:

4. Key constraints

o Keys are the entity set that is used to identify an entity within its entity set uniquely.

o An entity set can have multiple keys, but out of which one key will be the primary

key. A primary key can contain a unique and null value in the relational table.

Example:

Relational Calculus

o Relational calculus is a non-procedural query language. In the non-procedural query

language, the user is concerned with the details of how to obtain the end results.

o The relational calculus tells what to do but never explains how to do.

Types of Relational calculus:

1. Tuple Relational Calculus (TRC)

o The tuple relational calculus is specified to select the tuples in a relation. In TRC,

filtering variable uses the tuples of a relation.

o The result of the relation can have one or more tuples.

Notation:

1. {T | P (T)} or {T | Condition (T)}

Where

T is the resulting tuples

P(T) is the condition used to fetch T.

For example:

1. { T.name | Author(T) AND T.article = 'database' }

OUTPUT: This query selects the tuples from the AUTHOR relation. It returns a tuple with

'name' from Author who has written an article on 'database'.

TRC (tuple relation calculus) can be quantified. In TRC, we can use Existential (∃) and

Universal Quantifiers (∀).

For example:

1. { R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}

Output: This query will yield the same result as the previous one.

2. Domain Relational Calculus (DRC)

o The second form of relation is known as Domain relational calculus. In domain

relational calculus, filtering variable uses the domain of attributes.

o Domain relational calculus uses the same operators as tuple calculus. It uses logical

connectives ∧ (and), ∨ (or) and ┓ (not).

o It uses Existential (∃) and Universal Quantifiers (∀) to bind the variable.

Notation:

1. { a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}

Where

a1, a2 are attributes

P stands for formula built by inner attributes

For example:

1. {< article, page, subject > | ∈ javatpoint ∧ subject = 'database'}

Output: This query will yield the article, page, and subject from the relational javatpoint,

where the subject is a database.

SQL

o SQL stands for Structured Query Language. It is used for storing and managing data

in relational database management system (RDMS).

o It is a standard language for Relational Database System. It enables a user to create,

read, update and delete relational databases and tables.

o All the RDBMS like MySQL, Informix, Oracle, MS Access and SQL Server use SQL

as their standard database language.

o SQL allows users to query the database in a number of ways, using English-like

statements.

Rules:

SQL follows the following rules:

o Structure query language is not case sensitive. Generally, keywords of SQL are

written in uppercase.

o Statements of SQL are dependent on text lines. We can use a single SQL statement on

one or multiple text line.

o Using the SQL statements, you can perform most of the actions in a database.

o SQL depends on tuple relational calculus and relational algebra.

SQL process:

o When an SQL command is executing for any RDBMS, then the system figure out the

best way to carry out the request and the SQL engine determines that how to interpret

the task.

o In the process, various components are included. These components can be

optimization Engine, Query engine, Query dispatcher, classic, etc.

o All the non-SQL queries are handled by the classic query engine, but SQL query

engine won't handle logical files.

Characteristics of SQL

o SQL is easy to learn.

o SQL is used to access data from relational database management systems.

o SQL can execute queries against the database.

o SQL is used to describe the data.

o SQL is used to define the data in the database and manipulate it when needed.

o SQL is used to create and drop the database and table.

o SQL is used to create a view, stored procedure, function in a database.

o SQL allows users to set permissions on tables, procedures, and views.

Advantages of SQL

There are the following advantages of SQL:

High speed

Using the SQL queries, the user can quickly and efficiently retrieve a large amount of

records from a database.

No coding needed

In the standard SQL, it is very easy to manage the database system. It doesn't require a

substantial amount of code to manage the database system.

SQL Datatype

o SQL Datatype is used to define the values that a column can contain.

o Every column is required to have a name and data type in the database table.

Datatype of SQL:

1. Binary Datatypes

There are Three types of binary Datatypes which are given below:

Data Type Description

binary It has a maximum length of 8000 bytes. It contains fixed-length binary data.

varbinary It has a maximum length of 8000 bytes. It contains variable-length binary data.

image It has a maximum length of 2,147,483,647 bytes. It contains variable-length binary

data.

2. Approximate Numeric Datatype :

The subtypes are given below:

Data type From To Description

float -1.79E + 308 1.79E + 308 It is used to specify a floating-

point value e.g. 6.2, 2.9 etc.

real -3.40e + 38 3.40E + 38 It specifies a single precision

floating point number

3. Exact Numeric Datatype

The subtypes are given below:

Data type Description

int It is used to specify an integer value.

smallint It is used to specify small integer value.

bit It has the number of bits to store.

decimal It specifies a numeric value that can have a decimal number.

numeric It is used to specify a numeric value.

4. Character String Datatype

The subtypes are given below:

Data type Description

char It has a maximum length of 8000 characters. It contains Fixed-length non-unicode

characters.

varchar It has a maximum length of 8000 characters. It contains variable-length non-unicode

characters.

text It has a maximum length of 2,147,483,647 characters. It contains variable-length

non-unicode characters.

5. Date and time Datatypes

The subtypes are given below:

Datatype Description

date It is used to store the year, month, and days value.

time It is used to store the hour, minute, and second values.

timestamp It stores the year, month, day, hour, minute, and the second value.

SQL Commands

o SQL commands are instructions. It is used to communicate with the database. It is

also used to perform specific tasks, functions, and queries of data.

o SQL can perform various tasks like create a table, add data to tables, drop the table,

modify the table, set permission for users.

Types of SQL Commands

There are five types of SQL commands: DDL, DML, DCL, TCL, and DQL.

1. Data Definition Language (DDL)

o DDL changes the structure of the table like creating a table, deleting a table, altering a

table, etc.

o All the command of DDL are auto-committed that means it permanently save all the

changes in the database.

Here are some commands that come under DDL:

o CREATE

o ALTER

o DROP

o TRUNCATE

a. CREATE It is used to create a new table in the database.

Syntax:

CREATE TABLE TABLE_NAME (COLUMN_NAME DATATYPES[,....]);

Example:

CREATE TABLE EMPLOYEE(Name VARCHAR2(20), Email VARCHAR2(100),

DOB DATE);

b. DROP: It is used to delete both the structure and record stored in the table.

Syntax

DROP TABLE ;

Example

DROP TABLE EMPLOYEE;

c. ALTER: It is used to alter the structure of the database. This change could be either to

modify the characteristics of an existing attribute or probably to add a new attribute.

Syntax:

To add a new column in the table

ALTER TABLE table_name ADD column_name COLUMN-definition;

To modify existing column in the table:

ALTER TABLE MODIFY(COLUMN DEFINITION....);

EXAMPLE

ALTER TABLE STU_DETAILS ADD(ADDRESS VARCHAR2(20));

ALTER TABLE STU_DETAILS MODIFY (NAME VARCHAR2(20));

d. TRUNCATE: It is used to delete all the rows from the table and free the space

containing the table.

Syntax:

TRUNCATE TABLE table_name;

Example:

TRUNCATE TABLE EMPLOYEE;

2. Data Manipulation Language

o DML commands are used to modify the database. It is responsible for all form of

changes in the database.

o The command of DML is not auto-committed that means it can't permanently save all

the changes in the database. They can be rollback.

Here are some commands that come under DML:

o INSERT

o UPDATE

o DELETE

a. INSERT: The INSERT statement is a SQL query. It is used to insert data into the row

of a table.

Syntax:

INSERT INTO TABLE_NAME (col1, col2, col3,.... col N) VALUES (value1, value

2, value3, valueN);

Or

INSERT INTO TABLE_NAME VALUES (value1, value2, value3, valueN);

For example:

INSERT INTO javatpoint (Author, Subject) VALUES ("Sonoo", "DBMS");

b. UPDATE: This command is used to update or modify the value of a column in the

table.

Syntax:

UPDATE table_name SET [column_name1= value1,...column_nameN = valueN] [W

HERE CONDITION]

For example:

UPDATE students SET User_Name = 'Sonoo' WHERE Student_Id = '3'

c. DELETE: It is used to remove one or more row from a table.

Syntax:

DELETE FROM table_name [WHERE condition];

For example:

DELETE FROM javatpoint WHERE Author="Sonoo";

3. Data Control Language

DCL commands are used to grant and take back authority from any database user.

Here are some commands that come under DCL:

o Grant

o Revoke

a. Grant: It is used to give user access privileges to a database.

Example

 GRANT SELECT, UPDATE ON MY_TABLE TO SOME_USER, ANOTHER_USER;

b. Revoke: It is used to take back permissions from the user.

Example

REVOKE SELECT, UPDATE ON MY_TABLE FROM USER1, USER2;

4. Transaction Control Language

TCL commands can only use with DML commands like INSERT, DELETE and

UPDATE only.

These operations are automatically committed in the database that's why they cannot be

used while creating tables or dropping them.

Here are some commands that come under TCL:

o COMMIT

o ROLLBACK

o SAVEPOINT

a. Commit: Commit command is used to save all the transactions to the database.

Syntax:

COMMIT;

Example:

DELETE FROM CUSTOMERS WHERE AGE = 25; COMMIT;

b. Rollback: Rollback command is used to undo transactions that have not already been

saved to the database.

Syntax:

ROLLBACK;

Example:

DELETE FROM CUSTOMERS WHERE AGE = 25; ROLLBACK;

c. SAVEPOINT: It is used to roll the transaction back to a certain point without rolling

back the entire transaction.

Syntax:

SAVEPOINT SAVEPOINT_NAME;

5. Data Query Language

DQL is used to fetch the data from the database.

It uses only one command:

o SELECT

a. SELECT: This is the same as the projection operation of relational algebra. It is used

to select the attribute based on the condition described by WHERE clause.

Syntax:

SELECT expressions FROM TABLES WHERE conditions;

For example:

SELECT emp_name FROM employee WHERE age > 20;

SQL Operator

There are various types of SQL operator:

SQL Arithmetic Operators

Let's assume 'variable a' and 'variable b'. Here, 'a' contains 20 and 'b' contains 10.

Operator Description Example

+ It adds the value of both operands. a+b will give 30

- It is used to subtract the right-hand operand from the left-

hand operand.

a-b will give 10

* It is used to multiply the value of both operands. a*b will give 200

/ It is used to divide the left-hand operand by the right-hand

operand.

a/b will give 2

% It is used to divide the left-hand operand by the right-hand

operand and returns reminder.

a%b will give 0

SQL Comparison Operators:

Let's assume 'variable a' and 'variable b'. Here, 'a' contains 20 and 'b' contains 10.

Operator Description Example

= It checks if two operands values are equal or not, if the values

are queal then condition becomes true.

(a=b) is not true

!= It checks if two operands values are equal or not, if values are

not equal, then condition becomes true.

(a!=b) is true

<> It checks if two operands values are equal or not, if values are

not equal then condition becomes true.

(a<>b) is true

> It checks if the left operand value is greater than right operand

value, if yes then condition becomes true.

(a>b) is not true

< It checks if the left operand value is less than right operand

value, if yes then condition becomes true.

(a<b) is true

>= It checks if the left operand value is greater than or equal to (a>=b) is not true

the right operand value, if yes then condition becomes true.

<= It checks if the left operand value is less than or equal to the

right operand value, if yes then condition becomes true.

(a<=b) is true

!< It checks if the left operand value is not less than the right

operand value, if yes then condition becomes true.

(a!=b) is not true

!> It checks if the left operand value is not greater than the right

operand value, if yes then condition becomes true.

(a!>b) is true

SQL Logical Operators

There is the list of logical operator used in SQL:

Operator Description

ALL It compares a value to all values in another value set.

AND It allows the existence of multiple conditions in an SQL statement.

ANY It compares the values in the list according to the condition.

BETWEEN It is used to search for values that are within a set of values.

IN It compares a value to that specified list value.

NOT It reverses the meaning of any logical operator.

OR It combines multiple conditions in SQL statements.

EXISTS It is used to search for the presence of a row in a specified table.

LIKE It compares a value to similar values using wildcard operator.

SQL Table

o SQL Table is a collection of data which is organized in terms of rows and columns. In

DBMS, the table is known as relation and row as a tuple.

o Table is a simple form of data storage. A table is also considered as a convenient

representation of relations.

Let's see an example of the EMPLOYEE table:

EMP_ID EMP_NAME CITY PHONE_NO

1 Kristen Washington 7289201223

2 Anna Franklin 9378282882

3 Jackson Bristol 9264783838

4 Kellan California 7254728346

5 Ashley Hawaii 9638482678

In the above table, "EMPLOYEE" is the table name, "EMP_ID", "EMP_NAME", "CITY",

"PHONE_NO" are the column names. The combination of data of multiple columns forms a

row, e.g., 1, "Kristen", "Washington" and 7289201223 are the data of one row.

Operation on Table

1. Create table

2. Drop table

3. Delete table

4. Rename table

SQL Create Table

SQL create table is used to create a table in the database. To define the table, you should

define the name of the table and also define its columns and column's data type.

Syntax

1. create table "table_name"

2. ("column1" "data type",

3. "column2" "data type",

4. "column3" "data type",

5. ...

6. "columnN" "data type");

Example

1. SQL> CREATE TABLE EMPLOYEE (

2. EMP_ID INT NOT NULL,

3. EMP_NAME VARCHAR (25) NOT NULL,

4. PHONE_NO INT NOT NULL,

5. ADDRESS CHAR (30),

6. PRIMARY KEY (ID)

7.);

If you create the table successfully, you can verify the table by looking at the message by the

SQL server. Else you can use DESC command as follows:

SQL> DESC EMPLOYEE;

Field Type Null Key Default Extra

EMP_ID int(11) NO PRI NULL

EMP_NAME varchar(25) NO NULL

PHONE_NO NO int(11) NULL

ADDRESS YES NULL char(30)

Now you have an EMPLOYEE table in the database, and you can use the stored information

related to the employees.

Drop table

A SQL drop table is used to delete a table definition and all the data from a table. When this

command is executed, all the information available in the table is lost forever, so you have to

very careful while using this command.

Syntax

DROP TABLE "table_name";

Firstly, you need to verify the EMPLOYEE table using the following command:

SQL> DESC EMPLOYEE;

Field Type Null Key Default Extra

EMP_ID int(11) NO PRI NULL

EMP_NAME varchar(25) NO NULL

PHONE_NO NO int(11) NULL

ADDRESS YES NULL char(30)

This table shows that EMPLOYEE table is available in the database, so we can drop it as

follows:

SQL>DROP TABLE EMPLOYEE;

 As this shows that the table is dropped, so it doesn't display it.

SQL DELETE table

In SQL, DELETE statement is used to delete rows from a table. We can use WHERE

condition to delete a specific row from a table. If you want to delete all the records from the

table, then you don't need to use the WHERE clause.

Syntax

DELETE FROM table_name WHERE condition;

Example

Suppose, the EMPLOYEE table having the following records:

EMP_ID EMP_NAME CITY PHONE_NO SALARY

1 Kristen Chicago 9737287378 150000

2 Russell Austin 9262738271 200000

3 Denzel Boston 7353662627 100000

4 Angelina Denver 9232673822 600000

5 Robert Washington 9367238263 350000

6 Christian Los angels 7253847382 260000

The following query will DELETE an employee whose ID is 2.

SQL> DELETE FROM EMPLOYEE

WHERE EMP_ID = 3;

Now, the EMPLOYEE table would have the following records.

EMP_ID EMP_NAME CITY PHONE_NO SALARY

1 Kristen Chicago 9737287378 150000

2 Russell Austin 9262738271 200000

4 Angelina Denver 9232673822 600000

5 Robert Washington 9367238263 350000

6 Christian Los angels 7253847382 260000

If you don't specify the WHERE condition, it will remove all the rows from the table.

DELETE FROM EMPLOYEE;

Now, the EMPLOYEE table would not have any records.

SQL SELECT Statement

In SQL, the SELECT statement is used to query or retrieve data from a table in the database.

The returns data is stored in a table, and the result table is known as result-set.

Syntax

SELECT column1, column2, ... FROM table_name;

Here, the expression is the field name of the table that you want to select data from.

Use the following syntax to select all the fields available in the table:

SELECT * FROM table_name;

Example:

EMPLOYEE

EMP_ID EMP_NAME CITY PHONE_NO SALARY

1 Kristen Chicago 9737287378 150000

2 Russell Austin 9262738271 200000

3 Angelina Denver 9232673822 600000

4 Robert Washington 9367238263 350000

5 Christian Los angels 7253847382 260000

To fetch the EMP_ID of all the employees, use the following query:

1. SELECT EMP_ID FROM EMPLOYEE;

Output

EMP_ID

1

2

3

4

5

To fetch the EMP_NAME and SALARY, use the following query:

SELECT EMP_NAME, SALARY FROM EMPLOYEE;

EMP_NAME SALARY

Kristen 150000

Russell 200000

Angelina 600000

Robert 350000

Christian 260000

SQL INSERT Statement

The SQL INSERT statement is used to insert a single or multiple data in a table. In SQL, You

can insert the data in two ways:

1. Without specifying column name

2. By specifying column name

Sample Table

EMPLOYEE

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

4 Kristen Washington 500000 29

5 Russell Los angels 200000 36

1. Without specifying column name

If you want to specify all column values, you can specify or ignore the column values.

Syntax

INSERT INTO TABLE_NAME

VALUES (value1, value2, value 3, Value N);

Query

INSERT INTO EMPLOYEE VALUES (6, 'Marry', 'Canada', 600000, 48);

Output: After executing this query, the EMPLOYEE table will look like:

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

4 Kristen Washington 500000 29

5 Russell Los angels 200000 36

6 Marry Canada 600000 48

2. By specifying column name

To insert partial column values, you must have to specify the column names.

Syntax

INSERT INTO TABLE_NAME

[(col1, col2, col3,.... col N)]

VALUES (value1, value2, value 3, Value N);

Query

INSERT INTO EMPLOYEE (EMP_ID, EMP_NAME, AGE) VALUES (7, 'Jack', 40)

;

Output: After executing this query, the table will look like:

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

4 Kristen Washington 500000 29

5 Russell Los angels 200000 36

6 Marry Canada 600000 48

7 Jack null null 40

SQL Update Statement

The SQL UPDATE statement is used to modify the data that is already in the database.

The condition in the WHERE clause decides that which row is to be updated.

Syntax

UPDATE table_name

SET column1 = value1, column2 = value2, ... WHERE condition;

Sample Table

EMPLOYEE

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

4 Kristen Washington 500000 29

5 Russell Los angels 200000 36

6 Marry Canada 600000 48

Updating single record

Update the column EMP_NAME and set the value to 'Emma' in the row where SALARY

is 500000.

Syntax

 UPDATE table_name SET column_name = value WHERE condition;

Query

 UPDATE EMPLOYEE SET EMP_NAME = 'Emma' WHERE SALARY = 500000;

Output: After executing this query, the EMPLOYEE table will look like:

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

4 Emma Washington 500000 29

5 Russell Los angels 200000 36

6 Marry Canada 600000 48

Updating multiple records

If you want to update multiple columns, you should separate each field assigned with a

comma. In the EMPLOYEE table, update the column EMP_NAME to 'Kevin' and CITY

to 'Boston' where EMP_ID is 5.

Syntax

UPDATE table_name

SET column_name = value1, column_name2 = value2

WHERE condition;

Query

UPDATE EMPLOYEE

SET EMP_NAME = 'Kevin', City = 'Boston'

WHERE EMP_ID = 5;

Output

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

4 Kristen Washington 500000 29

5 Kevin Boston 200000 36

6 Marry Canada 600000 48

Without use of WHERE clause

If you want to update all row from a table, then you don't need to use the WHERE clause.

In the EMPLOYEE table, update the column EMP_NAME as 'Harry'.

Syntax

UPDATE table_name

SET column_name = value1;

Query

UPDATE EMPLOYEE

SET EMP_NAME = 'Harry';

Output

EMP_ID EMP_NAME CITY SALARY AGE

1 Harry Chicago 200000 30

2 Harry Austin 300000 26

3 Harry Denver 100000 42

4 Harry Washington 500000 29

5 Harry Los angels 200000 36

6 Harry Canada 600000 48

SQL DELETE Statement

The SQL DELETE statement is used to delete rows from a table. Generally, DELETE

statement removes one or more records form a table.

Syntax

DELETE FROM table_name WHERE some_condition;

Sample Table

EMPLOYEE

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

4 Kristen Washington 500000 29

5 Russell Los angels 200000 36

6 Marry Canada 600000 48

Deleting Single Record

Delete the row from the table EMPLOYEE where EMP_NAME = 'Kristen'. This will delete

only the fourth row.

Query

DELETE FROM EMPLOYEE

WHERE EMP_NAME = 'Kristen';

Output: After executing this query, the EMPLOYEE table will look like:

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

5 Russell Los angels 200000 36

6 Marry Canada 600000 48

Deleting Multiple Record

Delete the row from the EMPLOYEE table where AGE is 30. This will delete two rows(first

and third row).

Query

DELETE FROM EMPLOYEE WHERE AGE= 30;

Output: After executing this query, the EMPLOYEE table will look like:

EMP_ID EMP_NAME CITY SALARY AGE

2 Robert Austin 300000 26

3 Christian Denver 100000 42

5 Russell Los angels 200000 36

6 Marry Canada 600000 48

Delete all of the records

Delete all the row from the EMPLOYEE table. After this, no records left to display. The

EMPLOYEE table will become empty.

Syntax

DELETE * FROM table_name;

or

DELETE FROM table_name;

Query

DELETE FROM EMPLOYEE;

Output: After executing this query, the EMPLOYEE table will look like:

EMP_ID EMP_NAME CITY SALARY AGE

Views in SQL

o Views in SQL are considered as a virtual table. A view also contains rows and

columns.

o To create the view, we can select the fields from one or more tables present in the

database.

o A view can either have specific rows based on certain condition or all the rows of a

table.

Sample table:

Student_Detail

STU_ID NAME ADDRESS

1 Stephan Delhi

2 Kathrin Noida

3 David Ghaziabad

4 Alina Gurugram

Student_Marks

STU_ID NAME MARKS AGE

1 Stephan 97 19

2 Kathrin 86 21

3 David 74 18

4 Alina 90 20

5 John 96 18

1. Creating view

A view can be created using the CREATE VIEW statement. We can create a view from a

single table or multiple tables.

Syntax:

CREATE VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE condition;

2. Creating View from a single table

In this example, we create a View named DetailsView from the table Student_Detail.

Query:

CREATE VIEW DetailsView AS

SELECT NAME, ADDRESS

FROM Student_Details

WHERE STU_ID < 4;

Just like table query, we can query the view to view the data.

SELECT * FROM DetailsView;

Output:

NAME ADDRESS

Stephan Delhi

Kathrin Noida

David Ghaziabad

3. Creating View from multiple tables

View from multiple tables can be created by simply include multiple tables in the SELECT

statement.

In the given example, a view is created named MarksView from two tables Student_Detail

and Student_Marks.

Query:

CREATE VIEW MarksView AS

SELECT Student_Detail.NAME, Student_Detail.ADDRESS, Student_Marks.MARK

S

FROM Student_Detail, Student_Mark

WHERE Student_Detail.NAME = Student_Marks.NAME;

To display data of View MarksView:

SELECT * FROM MarksView;

NAME ADDRESS MARKS

Stephan Delhi 97

Kathrin Noida 86

David Ghaziabad 74

Alina Gurugram 90

4. Deleting View

A view can be deleted using the Drop View statement.

Syntax

1. DROP VIEW view_name;

Example:

If we want to delete the View MarksView, we can do this as:

1. DROP VIEW MarksView;

SQL Index

o Indexes are special lookup tables. It is used to retrieve data from the database very

fast.

o An Index is used to speed up select queries and where clauses. But it shows down the

data input with insert and update statements. Indexes can be created or dropped

without affecting the data.

o An index in a database is just like an index in the back of a book.

o For example: When you reference all pages in a book that discusses a certain topic,

you first have to refer to the index, which alphabetically lists all the topics and then

referred to one or more specific page numbers.

1. Create Index statement

It is used to create an index on a table. It allows duplicate value.

Syntax

CREATE INDEX index_name

ON table_name (column1, column2, ...);

Example

CREATE INDEX idx_name

ON Persons (LastName, FirstName);

2. Unique Index statement

It is used to create a unique index on a table. It does not allow duplicate value.

Syntax

CREATE UNIQUE INDEX index_name

ON table_name (column1, column2, ...);

Example

1. CREATE UNIQUE INDEX websites_idx

2. ON websites (site_name);

3. Drop Index Statement

It is used to delete an index in a table.

Syntax

DROP INDEX index_name;

Example

DROP INDEX websites_idx;

References:

[1] https://www.geeksforgeeks.org/introduction-of-b-tree-2/

[2] https://www.javatpoint.com/dbms-sequential-file-organization

https://www.geeksforgeeks.org/introduction-of-b-tree-2/
https://www.javatpoint.com/dbms-sequential-file-organization

