
SUBJECT: INTRODUCTION TO DBMS 

CODE: BCA501N 

UNIT-V 

ER model 

o ER model stands for an Entity-Relationship model. It is a high-level data model. This 

model is used to define the data elements and relationship for a specified system. 

o It develops a conceptual design for the database. It also develops a very simple and 

easy to design view of data. 

o In ER modeling, the database structure is portrayed as a diagram called an entity-

relationship diagram. 

For example, Suppose we design a school database. In this database, the student will be an 

entity with attributes like address, name, id, age, etc. The address can be another entity with 

attributes like city, street name, pin code, etc and there will be a relationship between them. 

 

 
 

 

 

 

 



Component of ER Diagram 

 

 
 

1. Entity: 

An entity may be any object, class, person or place. In the ER diagram, an entity can be 

represented as rectangles. 

Consider an organization as an example- manager, product, employee, department etc. can be 

taken as an entity. 

 

 
 

a. Weak Entity 



An entity that depends on another entity called a weak entity. The weak entity doesn't contain 

any key attribute of its own. The weak entity is represented by a double rectangle. 

 

 
 

2. Attribute 

The attribute is used to describe the property of an entity. Eclipse is used to represent an 

attribute. 

For example, id, age, contact number, name, etc. can be attributes of a student. 

 

 
 

a. Key Attribute 

The key attribute is used to represent the main characteristics of an entity. It represents a 

primary key. The key attribute is represented by an ellipse with the text underlined. 



 

 
 

b. Composite Attribute 

An attribute that composed of many other attributes is known as a composite attribute. The 

composite attribute is represented by an ellipse, and those ellipses are connected with an 

ellipse. 

 

 
 

c. Multivalued Attribute 

An attribute can have more than one value. These attributes are known as a multivalued 

attribute. The double oval is used to represent multivalued attribute. 

For example, a student can have more than one phone number. 

 

 
 



d. Derived Attribute 

An attribute that can be derived from other attribute is known as a derived attribute. It can be 

represented by a dashed ellipse. 

For example, A person's age changes over time and can be derived from another attribute 

like Date of birth. 

 

 
 

3. Relationship 

A relationship is used to describe the relation between entities. Diamond or rhombus is used 

to represent the relationship. 

 

 
 

Types of relationship are as follows: 

a. One-to-One Relationship 

When only one instance of an entity is associated with the relationship, then it is known as 

one to one relationship. 

For example, A female can marry to one male, and a male can marry to one female. 



 

 
 

b. One-to-many relationship 

When only one instance of the entity on the left, and more than one instance of an entity on 

the right associates with the relationship then this is known as a one-to-many relationship. 

For example, Scientist can invent many inventions, but the invention is done by the only 

specific scientist. 

 

 
 

c. Many-to-one relationship 

When more than one instance of the entity on the left, and only one instance of an entity on 

the right associates with the relationship then it is known as a many-to-one relationship. 

For example, Student enrolls for only one course, but a course can have many students. 

 

 
 

d. Many-to-many relationship 

When more than one instance of the entity on the left, and more than one instance of an entity 

on the right associates with the relationship then it is known as a many-to-many relationship. 

For example, Employee can assign by many projects and project can have many employees. 



 

 

Notation of ER diagram 

Database can be represented using the notations. In ER diagram, many notations are used to 

express the cardinality. These notations are as follows: 

 

 
Fig: Notations of ER diagram 

 

Reduction of ER diagram to Table 

The database can be represented using the notations, and these notations can be reduced to a 

collection of tables. 

In the database, every entity set or relationship set can be represented in tabular form. 

The ER diagram is given below: 



 

 

 

There are some points for converting the ER diagram to the table: 

o Entity type becomes a table. 

In the given ER diagram, LECTURE, STUDENT, SUBJECT and COURSE forms individual 

tables. 

o All single-valued attribute becomes a column for the table. 

In the STUDENT entity, STUDENT_NAME and STUDENT_ID form the column of 

STUDENT table. Similarly, COURSE_NAME and COURSE_ID form the column of 

COURSE table and so on. 

o A key attribute of the entity type represented by the primary key. 

In the given ER diagram, COURSE_ID, STUDENT_ID, SUBJECT_ID, and LECTURE_ID 

are the key attribute of the entity. 

o The multivalued attribute is represented by a separate table. 

In the student table, a hobby is a multivalued attribute. So it is not possible to represent 

multiple values in a single column of STUDENT table. Hence we create a table 

STUD_HOBBY with column name STUDENT_ID and HOBBY. Using both the column, we 

create a composite key. 



o Composite attribute represented by components. 

In the given ER diagram, student address is a composite attribute. It contains CITY, PIN, 

DOOR#, STREET, and STATE. In the STUDENT table, these attributes can merge as an 

individual column. 

o Derived attributes are not considered in the table. 

In the STUDENT table, Age is the derived attribute. It can be calculated at any point of time 

by calculating the difference between current date and Date of Birth. 

Using these rules, you can convert the ER diagram to tables and columns and assign the 

mapping between the tables. Table structure for the given ER diagram is as below: 

 

 

Figure: Table structure 

 

 

 

 



UNIT-VI 

Data Normalization 

Functional Dependency 

The functional dependency is a relationship that exists between two attributes. It typically 

exists between the primary key and non-key attribute within a table. 

X   →   Y   

The left side of FD is known as a determinant, the right side of the production is known as a 

dependent. 

For example: 

Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address. 

Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table 

because if we know the Emp_Id, we can tell that employee name associated with it. 

Functional dependency can be written as: 

Emp_Id → Emp_Name    

We can say that Emp_Name is functionally dependent on Emp_Id. 

Types of Functional dependency 

 

 
 

1. Trivial functional dependency 

o A → B has trivial functional dependency if B is a subset of A. 



o The following dependencies are also trivial like: A → A, B → B 

Example: 

Consider a table with two columns Employee_Id and Employee_Name.   

{Employee_id, Employee_Name}   →    Employee_Id is a trivial functional dependen

cy as    

Employee_Id is a subset of {Employee_Id, Employee_Name}.   

Also, Employee_Id → Employee_Id and Employee_Name   →    Employee_Name ar

e trivial dependencies too.   

2. Non-trivial functional dependency 

o A → B has a non-trivial functional dependency if B is not a subset of A. 

o When A intersection B is NULL, then A → B is called as complete non-trivial. 

Example: 

ID   →    Name,   

Name   →    DOB   

Inference Rule (IR): 

o The Armstrong's axioms are the basic inference rule. 

o Armstrong's axioms are used to conclude functional dependencies on a relational 

database. 

o The inference rule is a type of assertion. It can apply to a set of FD(functional 

dependency) to derive other FD. 

o Using the inference rule, we can derive additional functional dependency from the 

initial set. 

The Functional dependency has 6 types of inference rule: 

1. Reflexive Rule (IR1) 

In the reflexive rule, if Y is a subset of X, then X determines Y. 

If X ⊇ Y then X  →    Y   

Example: 

X = {a, b, c, d, e}   

Y = {a, b, c}   



2. Augmentation Rule (IR2) 

The augmentation is also called as a partial dependency. In augmentation, if X determines Y, 

then XZ determines YZ for any Z. 

If X    →  Y then XZ   →   YZ    

Example: 

For R(ABCD),  if A   →   B then AC  →   BC   

3. Transitive Rule (IR3) 

In the transitive rule, if X determines Y and Y determine Z, then X must also determine Z. 

If X   →   Y and Y  →  Z then X  →   Z     

4. Union Rule (IR4) 

Union rule says, if X determines Y and X determines Z, then X must also determine Y and Z. 

If X    →  Y and X   →  Z then X  →    YZ      

Proof: 

1. X → Y (given) 

2. X → Z (given) 

3. X → XY (using IR2 on 1 by augmentation with X. Where XX = X) 

4. XY → YZ (using IR2 on 2 by augmentation with Y) 

5. X → YZ (using IR3 on 3 and 4) 

5. Decomposition Rule (IR5) 

Decomposition rule is also known as project rule. It is the reverse of union rule. 

This Rule says, if X determines Y and Z, then X determines Y and X determines Z 

separately. 

If X   →   YZ then X   →   Y and X  →    Z    

Proof: 

1. X → YZ (given) 

2. YZ → Y (using IR1 Rule) 

3. X → Y (using IR3 on 1 and 2) 

6. Pseudo transitive Rule (IR6) 

In Pseudo transitive Rule, if X determines Y and YZ determines W, then XZ determines W. 

If X   →   Y and YZ   →   W then XZ   →   W    



Proof: 

1. X → Y (given) 

2. WY → Z (given) 

3. WX → WY (using IR2 on 1 by augmenting with W) 

4. WX → Z (using IR3 on 3 and 2) 

Normalization 

o Normalization is the process of organizing the data in the database. 

o Normalization is used to minimize the redundancy from a relation or set of relations. 

It is also used to eliminate the undesirable characteristics like Insertion, Update and 

Deletion Anomalies. 

o Normalization divides the larger table into the smaller table and links them using 

relationship. 

o The normal form is used to reduce redundancy from the database table. 

Types of Normal Forms 

There are the four types of normal forms: 

 

 

Normal 

Form 

Description 

1NF A relation is in 1NF if it contains 

an atomic value. 

https://www.javatpoint.com/dbms-first-normal-form


2NF A relation will be in 2NF if it is in 1NF and all non-key attributes are fully 

functional dependent on the primary key. 

3NF A relation will be in 3NF if it is in 2NF and no transition dependency 

exists. 

4NF A relation will be in 4NF if it is in Boyce Codd normal form and has no 

multi-valued dependency. 

5NF A relation is in 5NF if it is in 4NF and not contains any join dependency 

and joining should be lossless. 

 

First Normal Form (1NF) 

o A relation will be 1NF if it contains an atomic value. 

o It states that an attribute of a table cannot hold multiple values. It must hold only 

single-valued attribute. 

o First normal form disallows the multi-valued attribute, composite attribute, and their 

combinations. 

Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute 

EMP_PHONE. 

EMPLOYEE table: 

EMP_ID EMP_NAME EMP_PHONE EMP_STATE 

14 John 7272826385, 

9064738238 

UP 

20 Harry 8574783832 Bihar 

12 Sam 7390372389, 

8589830302 

Punjab 

The decomposition of the EMPLOYEE table into 1NF has been shown below: 

https://www.javatpoint.com/dbms-second-normal-form
https://www.javatpoint.com/dbms-third-normal-form
https://www.javatpoint.com/dbms-forth-normal-form
https://www.javatpoint.com/dbms-fifth-normal-form


EMP_ID EMP_NAME EMP_PHONE EMP_STATE 

14 John 7272826385 UP 

14 John 9064738238 UP 

20 Harry 8574783832 Bihar 

12 Sam 7390372389 Punjab 

12 Sam 8589830302 Punjab 

 

 

Second Normal Form (2NF) 

o In the 2NF, relational must be in 1NF. 

o In the second normal form, all non-key attributes are fully functional dependent on the 

primary key 

Example: Let's assume, a school can store the data of teachers and the subjects they teach. In 

a school, a teacher can teach more than one subject. 

TEACHER table 

TEACHER_ID SUBJECT TEACHER_AGE 

25 Chemistry 30 

25 Biology 30 

47 English 35 

83 Math 38 

83 Computer 38 



In the given table, non-prime attribute TEACHER_AGE is dependent on TEACHER_ID 

which is a proper subset of a candidate key. That's why it violates the rule for 2NF. 

To convert the given table into 2NF, we decompose it into two tables: 

TEACHER_DETAIL table: 

TEACHER_ID TEACHER_AGE 

25 30 

47 35 

83 38 

TEACHER_SUBJECT table: 

TEACHER_ID SUBJECT 

25 Chemistry 

25 Biology 

47 English 

83 Math 

83 Computer 

 

Third Normal Form (3NF) 

o A relation will be in 3NF if it is in 2NF and not contain any transitive partial 

dependency. 

o 3NF is used to reduce the data duplication. It is also used to achieve the data integrity. 

o If there is no transitive dependency for non-prime attributes, then the relation must be 

in third normal form. 



A relation is in third normal form if it holds atleast one of the following conditions for every 

non-trivial function dependency X → Y. 

1. X is a super key. 

2. Y is a prime attribute, i.e., each element of Y is part of some candidate key. 

Example: 

EMPLOYEE_DETAIL table: 

EMP_ID EMP_NAME EMP_ZIP EMP_STATE EMP_CITY 

222 Harry 201010 UP Noida 

333 Stephan 02228 US Boston 

444 Lan 60007 US Chicago 

555 Katharine 06389 UK Norwich 

666 John 462007 MP Bhopal 

Super key in the table above: 

1. {EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EMP_ZIP}.

...so on   

Candidate key: {EMP_ID} 

Non-prime attributes: In the given table, all attributes except EMP_ID are non-prime. 

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP dependent on 

EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively dependent on 

super key(EMP_ID). It violates the rule of third normal form. 

That's why we need to move the EMP_CITY and EMP_STATE to the new 

<EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key. 

EMPLOYEE table: 

EMP_ID EMP_NAME EMP_ZIP 



222 Harry 201010 

333 Stephan 02228 

444 Lan 60007 

555 Katharine 06389 

666 John 462007 

EMPLOYEE_ZIP table: 

EMP_ZIP EMP_STATE EMP_CITY 

201010 UP Noida 

02228 US Boston 

60007 US Chicago 

06389 UK Norwich 

462007 MP Bhopal 

 

Boyce Codd normal form (BCNF) 

o BCNF is the advance version of 3NF. It is stricter than 3NF. 

o A table is in BCNF if every functional dependency X → Y, X is the super key of the 

table. 

o For BCNF, the table should be in 3NF, and for every FD, LHS is super key. 

Example: Let's assume there is a company where employees work in more than one 

department. 

EMPLOYEE table: 



EMP_ID EMP_COUNTRY EMP_DEPT DEPT_TYPE EMP_DEPT_NO 

264 India Designing D394 283 

264 India Testing D394 300 

364 UK Stores D283 232 

364 UK Developing D283 549 

In the above table Functional dependencies are as follows: 

1. EMP_ID  →  EMP_COUNTRY   

2. EMP_DEPT  →   {DEPT_TYPE, EMP_DEPT_NO}   

Candidate key: {EMP-ID, EMP-DEPT} 

The table is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys. 

To convert the given table into BCNF, we decompose it into three tables: 

EMP_COUNTRY table: 

EMP_ID EMP_COUNTRY 

264 India 

364 UK 

EMP_DEPT table: 

EMP_DEPT DEPT_TYPE EMP_DEPT_NO 

Designing D394 283 

Testing D394 300 

Stores D283 232 



Developing D283 549 

EMP_DEPT_MAPPING table: 

EMP_ID EMP_DEPT 

D394 283 

D394 300 

D283 232 

D283 549 

Functional dependencies: 

1. EMP_ID   →    EMP_COUNTRY   

2. EMP_DEPT   →   {DEPT_TYPE, EMP_DEPT_NO}   

Candidate keys: 

For the first table: EMP_ID 

For the second table: EMP_DEPT 

For the third table: {EMP_ID, EMP_DEPT} 

Now, this is in BCNF because left side part of both the functional dependencies is a key. 

 

 

 

 

 

 

 

 

 



Concurrency Control 

Transaction 

o The transaction is a set of logically related operation. It contains a group of tasks. 

o A transaction is an action or series of actions. It is performed by a single user to 

perform operations for accessing the contents of the database. 

Example: Suppose an employee of bank transfers Rs 800 from X's account to Y's account. 

This small transaction contains several low-level tasks: 

X's Account 

Open_Account(X)   

Old_Balance = X.balance   

New_Balance = Old_Balance - 800   

X.balance = New_Balance   

Close_Account(X)   

Y's Account 

Open_Account(Y)   

Old_Balance = Y.balance   

New_Balance = Old_Balance + 800   

Y.balance = New_Balance   

Close_Account(Y)   

Operations of Transaction: 

Following are the main operations of transaction: 

Read(X): Read operation is used to read the value of X from the database and stores it in a 

buffer in main memory. 

Write(X): Write operation is used to write the value back to the database from the buffer. 

Let's take an example to debit transaction from an account which consists of following 

operations: 

1. R(X);   

2. X = X - 500;   



3. W(X);   

Let's assume the value of X before starting of the transaction is 4000. 

o The first operation reads X's value from database and stores it in a buffer. 

o The second operation will decrease the value of X by 500. So buffer will contain 

3500. 

o The third operation will write the buffer's value to the database. So X's final value will 

be 3500. 

But it may be possible that because of the failure of hardware, software or power, etc. that 

transaction may fail before finished all the operations in the set. 

For example: If in the above transaction, the debit transaction fails after executing operation 

2 then X's value will remain 4000 in the database which is not acceptable by the bank. 

To solve this problem, we have two important operations: 

Commit: It is used to save the work done permanently. 

Rollback: It is used to undo the work done. 

Transaction property 

The transaction has the four properties. These are used to maintain consistency in a database, 

before and after the transaction. 

Property of Transaction 

1. Atomicity 

2. Consistency 

3. Isolation 

4. Durability 



 

Atomicity 

o It states that all operations of the transaction take place at once if not, the transaction 

is aborted. 

o There is no midway, i.e., the transaction cannot occur partially. Each transaction is 

treated as one unit and either run to completion or is not executed at all. 

Atomicity involves the following two operations: 

Abort: If a transaction aborts then all the changes made are not visible. 

Commit: If a transaction commits then all the changes made are visible. 

Example: Let's assume that following transaction T consisting of T1 and T2. A consists of 

Rs 600 and B consists of Rs 300. Transfer Rs 100 from account A to account B. 

T1 T2 

Read(A) 

A:= A-100 

Read(B) 

Y:= Y+100 



Write(A) Write(B) 

After completion of the transaction, A consists of Rs 500 and B consists of Rs 400. 

If the transaction T fails after the completion of transaction T1 but before completion of 

transaction T2, then the amount will be deducted from A but not added to B. This shows the 

inconsistent database state. In order to ensure correctness of database state, the transaction 

must be executed in entirety. 

Consistency 

o The integrity constraints are maintained so that the database is consistent before and 

after the transaction. 

o The execution of a transaction will leave a database in either its prior stable state or a 

new stable state. 

o The consistent property of database states that every transaction sees a consistent 

database instance. 

o The transaction is used to transform the database from one consistent state to another 

consistent state. 

For example: The total amount must be maintained before or after the transaction. 

Total before T occurs = 600+300=900   

Total after T occurs= 500+400=900   

Therefore, the database is consistent. In the case when T1 is completed but T2 fails, then 

inconsistency will occur. 

Isolation 

o It shows that the data which is used at the time of execution of a transaction cannot be 

used by the second transaction until the first one is completed. 

o In isolation, if the transaction T1 is being executed and using the data item X, then 

that data item can't be accessed by any other transaction T2 until the transaction T1 

ends. 

o The concurrency control subsystem of the DBMS enforced the isolation property. 

Durability 

o The durability property is used to indicate the performance of the database's 

consistent state. It states that the transaction made the permanent changes. 



o They cannot be lost by the erroneous operation of a faulty transaction or by the 

system failure. When a transaction is completed, then the database reaches a state 

known as the consistent state. That consistent state cannot be lost, even in the event of 

a system's failure. 

o The recovery subsystem of the DBMS has the responsibility of Durability property. 

States of Transaction 

In a database, the transaction can be in one of the following states - 

 

 
 

Active state 

o The active state is the first state of every transaction. In this state, the transaction is 

being executed. 

o For example: Insertion or deletion or updating a record is done here. But all the 

records are still not saved to the database. 

Partially committed 

o In the partially committed state, a transaction executes its final operation, but the data 

is still not saved to the database. 

o In the total mark calculation example, a final display of the total marks step is 

executed in this state. 

Committed 

A transaction is said to be in a committed state if it executes all its operations successfully. In 

this state, all the effects are now permanently saved on the database system. 



Failed state 

o If any of the checks made by the database recovery system fails, then the transaction 

is said to be in the failed state. 

o In the example of total mark calculation, if the database is not able to fire a query to 

fetch the marks, then the transaction will fail to execute. 

Aborted 

o If any of the checks fail and the transaction has reached a failed state then the 

database recovery system will make sure that the database is in its previous consistent 

state. If not then it will abort or roll back the transaction to bring the database into a 

consistent state. 

o If the transaction fails in the middle of the transaction then before executing the 

transaction, all the executed transactions are rolled back to its consistent state. 

o After aborting the transaction, the database recovery module will select one of the two 

operations: 

1. Re-start the transaction 

2. Kill the transaction 

 

Schedule 

A series of operation from one transaction to another transaction is known as schedule. It is 

used to preserve the order of the operation in each of the individual transaction. 

 

 
 

1. Serial Schedule 



The serial schedule is a type of schedule where one transaction is executed completely before 

starting another transaction. In the serial schedule, when the first transaction completes its 

cycle, then the next transaction is executed. 

For example: Suppose there are two transactions T1 and T2 which have some operations. If 

it has no interleaving of operations, then there are the following two possible outcomes: 

1. Execute all the operations of T1 which was followed by all the operations of T2. 

2. Execute all the operations of T1 which was followed by all the operations of T2. 

o In the given (a) figure, Schedule A shows the serial schedule where T1 followed by 

T2. 

o In the given (b) figure, Schedule B shows the serial schedule where T2 followed by 

T1. 

2. Non-serial Schedule 

o If interleaving of operations is allowed, then there will be non-serial schedule. 

o It contains many possible orders in which the system can execute the individual 

operations of the transactions. 

o In the given figure (c) and (d), Schedule C and Schedule D are the non-serial 

schedules. It has interleaving of operations. 

3. Serializable schedule 

o The serializability of schedules is used to find non-serial schedules that allow the 

transaction to execute concurrently without interfering with one another. 

o It identifies which schedules are correct when executions of the transaction have 

interleaving of their operations. 

o A non-serial schedule will be serializable if its result is equal to the result of its 

transactions executed serially. 



 

 
 

 
 



 
 

 
 

Here, 

Schedule A and Schedule B are serial schedule. 

Schedule C and Schedule D are Non-serial schedule. 

 

 



Testing of Serializability 

Serialization Graph is used to test the Serializability of a schedule. 

Assume a schedule S. For S, we construct a graph known as precedence graph. This graph 

has a pair G = (V, E), where V consists a set of vertices, and E consists a set of edges. The set 

of vertices is used to contain all the transactions participating in the schedule. The set of 

edges is used to contain all edges Ti ->Tj for which one of the three conditions holds: 

1. Create a node Ti → Tj if Ti executes write (Q) before Tj executes read (Q). 

2. Create a node Ti → Tj if Ti executes read (Q) before Tj executes write (Q). 

3. Create a node Ti → Tj if Ti executes write (Q) before Tj executes write (Q). 

 
 

o If a precedence graph contains a single edge Ti → Tj, then all the instructions of Ti 

are executed before the first instruction of Tj is executed. 

o If a precedence graph for schedule S contains a cycle, then S is non-serializable. If the 

precedence graph has no cycle, then S is known as serializable. 

For example: 

 

 
 



Explanation: 

Read(A): In T1, no subsequent writes to A, so no new edges 

Read(B): In T2, no subsequent writes to B, so no new edges 

Read(C): In T3, no subsequent writes to C, so no new edges 

Write(B): B is subsequently read by T3, so add edge T2 → T3 

Write(C): C is subsequently read by T1, so add edge T3 → T1 

Write(A): A is subsequently read by T2, so add edge T1 → T2 

Write(A): In T2, no subsequent reads to A, so no new edges 

Write(C): In T1, no subsequent reads to C, so no new edges 

Write(B): In T3, no subsequent reads to B, so no new edges 

Precedence graph for schedule S1: 

 

 
The precedence graph for schedule S1 contains a cycle that's why Schedule S1 is non-

serializable. 

 

 
 



Explanation: 

Read(A): In T4,no subsequent writes to A, so no new edges 

Read(C): In T4, no subsequent writes to C, so no new edges 

Write(A): A is subsequently read by T5, so add edge T4 → T5 

Read(B): In T5,no subsequent writes to B, so no new edges 

Write(C): C is subsequently read by T6, so add edge T4 → T6 

Write(B): A is subsequently read by T6, so add edge T5 → T6 

Write(C): In T6, no subsequent reads to C, so no new edges 

Write(A): In T5, no subsequent reads to A, so no new edges 

Write(B): In T6, no subsequent reads to B, so no new edges 

Precedence graph for schedule S2: 

 

 
 

The precedence graph for schedule S2 contains no cycle that's why ScheduleS2 is 

serializable. 

Conflict Serializable Schedule 

o A schedule is called conflict serializability if after swapping of non-conflicting 

operations, it can transform into a serial schedule. 

o The schedule will be a conflict serializable if it is conflict equivalent to a serial 

schedule. 

Conflicting Operations 

The two operations become conflicting if all conditions satisfy: 

1. Both belong to separate transactions. 

2. They have the same data item. 

3. They contain at least one write operation. 



Example: 

Swapping is possible only if S1 and S2 are logically equal. 

 

 
 

Here, S1 = S2. That means it is non-conflict. 

 

 
 

Here, S1 ≠ S2. That means it is conflict. 

Conflict Equivalent 

In the conflict equivalent, one can be transformed to another by swapping non-conflicting 

operations. In the given example, S2 is conflict equivalent to S1 (S1 can be converted to S2 

by swapping non-conflicting operations). 



Two schedules are said to be conflict equivalent if and only if: 

1. They contain the same set of the transaction. 

2. If each pair of conflict operations are ordered in the same way. 

Example: 

Schedule S2 is a serial schedule because, in this, all operations of T1 are performed before 

starting any operation of T2. Schedule S1 can be transformed into a serial schedule by 

swapping non-conflicting operations of S1. 

After swapping of non-conflict operations, the schedule S1 becomes: 

T1 T2 

Read(A) 

Write(A) 

Read(B) 

Write(B) 

 

 

 

 

Read(A) 

Write(A) 

Read(B) 

Write(B) 

Since, S1 is conflict serializable. 

 



View Serializability 

o A schedule will view serializable if it is view equivalent to a serial schedule. 

o If a schedule is conflict serializable, then it will be view serializable. 

o The view serializable which does not conflict serializable contains blind writes. 

View Equivalent 

Two schedules S1 and S2 are said to be view equivalent if they satisfy the following 

conditions: 

1. Initial Read 

An initial read of both schedules must be the same. Suppose two schedule S1 and S2. In 

schedule S1, if a transaction T1 is reading the data item A, then in S2, transaction T1 should 

also read A. 

 

 
 

Above two schedules are view equivalent because Initial read operation in S1 is done by T1 

and in S2 it is also done by T1. 

2. Updated Read 

In schedule S1, if Ti is reading A which is updated by Tj then in S2 also, Ti should read A 

which is updated by Tj. 

 

 

 



Above two schedules are not view equal because, in S1, T3 is reading A updated by T2 and 

in S2, T3 is reading A updated by T1. 

3. Final Write 

A final write must be the same between both the schedules. In schedule S1, if a transaction 

T1 updates A at last then in S2, final writes operations should also be done by T1. 

 

 

 

Above two schedules is view equal because Final write operation in S1 is done by T3 and in 

S2, the final write operation is also done by T3. 

Example: 

 

 
 

Schedule S 

With 3 transactions, the total number of possible schedule 

1. = 3! = 6   

2. S1 = <T1 T2 T3>   

3. S2 = <T1 T3 T2>   

4. S3 = <T2 T3 T1>   

5. S4 = <T2 T1 T3>   



6. S5 = <T3 T1 T2>   

7. S6 = <T3 T2 T1>   

Taking first schedule S1: 

 

 
 

Schedule S1 

Step 1: final updation on data items 

In both schedules S and S1, there is no read except the initial read that's why we don't need to 

check that condition. 

Step 2: Initial Read 

The initial read operation in S is done by T1 and in S1, it is also done by T1. 

Step 3: Final Write 

The final write operation in S is done by T3 and in S1, it is also done by T3. So, S and S1 are 

view Equivalent. 

The first schedule S1 satisfies all three conditions, so we don't need to check another 

schedule. 

Hence, view equivalent serial schedule is: 

1. T1    →      T2    →    T3   

Recoverability of Schedule 

Sometimes a transaction may not execute completely due to a software issue, system crash or 

hardware failure. In that case, the failed transaction has to be rollback. But some other 

transaction may also have used value produced by the failed transaction. So we also have to 

rollback those transactions. 



 

 

 

The above table 1 shows a schedule which has two transactions. T1 reads and writes the 

value of A and that value is read and written by T2. T2 commits but later on, T1 fails. Due to 

the failure, we have to rollback T1. T2 should also be rollback because it reads the value 

written by T1, but T2 can't be rollback because it already committed. So this type of schedule 

is known as irrecoverable schedule. 

Irrecoverable schedule: The schedule will be irrecoverable if Tj reads the updated value of 

Ti and Tj committed before Ti commit. 

 

 

 

The above table 2 shows a schedule with two transactions. Transaction T1 reads and writes 

A, and that value is read and written by transaction T2. But later on, T1 fails. Due to this, we 

have to rollback T1. T2 should be rollback because T2 has read the value written by T1. As it 

has not committed before T1 commits so we can rollback transaction T2 as well. So it is 

recoverable with cascade rollback. 



Recoverable with cascading rollback: The schedule will be recoverable with cascading 

rollback if Tj reads the updated value of Ti. Commit of Tj is delayed till commit of Ti. 

 

 

The above Table 3 shows a schedule with two transactions. Transaction T1 reads and write A 

and commits, and that value is read and written by T2. So this is a cascade less recoverable 

schedule. 

 

Failure Classification 

To find that where the problem has occurred, we generalize a failure into the following 

categories: 

1. Transaction failure 

2. System crash 

3. Disk failure 

1. Transaction failure 

The transaction failure occurs when it fails to execute or when it reaches a point from where 

it can't go any further. If a few transaction or process is hurt, then this is called as transaction 

failure. 

Reasons for a transaction failure could be - 

1. Logical errors: If a transaction cannot complete due to some code error or an 

internal error condition, then the logical error occurs. 

2. Syntax error: It occurs where the DBMS itself terminates an active 

transaction because the database system is not able to execute it. For 

example, The system aborts an active transaction, in case of deadlock or 

resource unavailability. 

2. System Crash 



o System failure can occur due to power failure or other hardware or software 

failure. Example: Operating system error. 

Fail-stop assumption: In the system crash, non-volatile storage is assumed not to be 

corrupted. 

3. Disk Failure 

o It occurs where hard-disk drives or storage drives used to fail frequently. It 

was a common problem in the early days of technology evolution. 

o Disk failure occurs due to the formation of bad sectors, disk head crash, and 

unreachability to the disk or any other failure, which destroy all or part of disk 

storage. 

 

Log-Based Recovery 

o The log is a sequence of records. Log of each transaction is maintained in some stable 

storage so that if any failure occurs, then it can be recovered from there. 

o If any operation is performed on the database, then it will be recorded in the log. 

o But the process of storing the logs should be done before the actual transaction is 

applied in the database. 

Let's assume there is a transaction to modify the City of a student. The following logs are 

written for this transaction. 

o When the transaction is initiated, then it writes 'start' log. 

1. <Tn, Start>   

o When the transaction modifies the City from 'Noida' to 'Bangalore', then another log is 

written to the file. 

1. <Tn, City, 'Noida', 'Bangalore' >   

o When the transaction is finished, then it writes another log to indicate the end of the 

transaction. 

1. <Tn, Commit>   

There are two approaches to modify the database: 

1. Deferred database modification: 

o The deferred modification technique occurs if the transaction does not modify the 

database until it has committed. 



o In this method, all the logs are created and stored in the stable storage, and the 

database is updated when a transaction commits. 

2. Immediate database modification: 

o The Immediate modification technique occurs if database modification occurs while 

the transaction is still active. 

o In this technique, the database is modified immediately after every operation. It 

follows an actual database modification. 

Recovery using Log records 

When the system is crashed, then the system consults the log to find which transactions need 

to be undone and which need to be redone. 

1. If the log contains the record <Ti, Start> and <Ti, Commit> or <Ti, Commit>, then 

the Transaction Ti needs to be redone. 

2. If log contains record<Tn, Start> but does not contain the record either <Ti, commit> 

or <Ti, abort>, then the Transaction Ti needs to be undone. 

Checkpoint 

o The checkpoint is a type of mechanism where all the previous logs are removed from 

the system and permanently stored in the storage disk. 

o The checkpoint is like a bookmark. While the execution of the transaction, such 

checkpoints are marked, and the transaction is executed then using the steps of the 

transaction, the log files will be created. 

o When it reaches to the checkpoint, then the transaction will be updated into the 

database, and till that point, the entire log file will be removed from the file. Then the 

log file is updated with the new step of transaction till next checkpoint and so on. 

o The checkpoint is used to declare a point before which the DBMS was in the 

consistent state, and all transactions were committed. 

Recovery using Checkpoint 

In the following manner, a recovery system recovers the database from this failure: 



 

 
 

o The recovery system reads log files from the end to start. It reads log files from T4 to 

T1. 

o Recovery system maintains two lists, a redo-list, and an undo-list. 

o The transaction is put into redo state if the recovery system sees a log with <Tn, 

Start> and <Tn, Commit> or just <Tn, Commit>. In the redo-list and their previous 

list, all the transactions are removed and then redone before saving their logs. 

o For example: In the log file, transaction T2 and T3 will have <Tn, Start> and <Tn, 

Commit>. The T1 transaction will have only <Tn, commit> in the log file. That's why 

the transaction is committed after the checkpoint is crossed. Hence it puts T1, T2 and 

T3 transaction into redo list. 

o The transaction is put into undo state if the recovery system sees a log with <Tn, 

Start> but no commit or abort log found. In the undo-list, all the transactions are 

undone, and their logs are removed. 

o For example: Transaction T4 will have <Tn, Start>. So T4 will be put into undo list 

since this transaction is not yet complete and failed amid. 

Deadlock in DBMS 

A deadlock is a condition where two or more transactions are waiting indefinitely for one 

another to give up locks. Deadlock is said to be one of the most feared complications in 

DBMS as no task ever gets finished and is in waiting state forever. 

For example: In the student table, transaction T1 holds a lock on some rows and needs to 

update some rows in the grade table. Simultaneously, transaction T2 holds locks on some 



rows in the grade table and needs to update the rows in the Student table held by Transaction 

T1. 

Now, the main problem arises. Now Transaction T1 is waiting for T2 to release its lock and 

similarly, transaction T2 is waiting for T1 to release its lock. All activities come to a halt state 

and remain at a standstill. It will remain in a standstill until the DBMS detects the deadlock 

and aborts one of the transactions. 

 

 
 

Deadlock Avoidance 

o When a database is stuck in a deadlock state, then it is better to avoid the database 

rather than aborting or restating the database. This is a waste of time and resource. 

o Deadlock avoidance mechanism is used to detect any deadlock situation in advance. 

A method like "wait for graph" is used for detecting the deadlock situation but this 

method is suitable only for the smaller database. For the larger database, deadlock 

prevention method can be used. 

Deadlock Detection 

In a database, when a transaction waits indefinitely to obtain a lock, then the DBMS should 

detect whether the transaction is involved in a deadlock or not. The lock manager maintains a 

Wait for the graph to detect the deadlock cycle in the database. 

Wait for Graph 

o This is the suitable method for deadlock detection. In this method, a graph is created 

based on the transaction and their lock. If the created graph has a cycle or closed loop, 

then there is a deadlock. 



o The wait for the graph is maintained by the system for every transaction which is 

waiting for some data held by the others. The system keeps checking the graph if 

there is any cycle in the graph. 

The wait for a graph for the above scenario is shown below: 

 

 
 

Deadlock Prevention 

o Deadlock prevention method is suitable for a large database. If the resources are 

allocated in such a way that deadlock never occurs, then the deadlock can be 

prevented. 

o The Database management system analyzes the operations of the transaction whether 

they can create a deadlock situation or not. If they do, then the DBMS never allowed 

that transaction to be executed. 

Wait-Die scheme 

In this scheme, if a transaction requests for a resource which is already held with a conflicting 

lock by another transaction then the DBMS simply checks the timestamp of both transactions. 

It allows the older transaction to wait until the resource is available for execution. 

Let's assume there are two transactions Ti and Tj and let TS(T) is a timestamp of any 

transaction T. If T2 holds a lock by some other transaction and T1 is requesting for resources 

held by T2 then the following actions are performed by DBMS: 

1. Check if TS(Ti) < TS(Tj) - If Ti is the older transaction and Tj has held some 

resource, then Ti is allowed to wait until the data-item is available for execution. That 

means if the older transaction is waiting for a resource which is locked by the younger 



transaction, then the older transaction is allowed to wait for resource until it is 

available. 

2. Check if TS(Ti) < TS(Tj) - If Ti is older transaction and has held some resource and if 

Tj is waiting for it, then Tj is killed and restarted later with the random delay but with 

the same timestamp. 

Wound wait scheme 

o In wound wait scheme, if the older transaction requests for a resource which is held 

by the younger transaction, then older transaction forces younger one to kill the 

transaction and release the resource. After the minute delay, the younger transaction is 

restarted but with the same timestamp. 

o If the older transaction has held a resource which is requested by the Younger 

transaction, then the younger transaction is asked to wait until older releases it. 

 

Concurrency Control 

o In the concurrency control, the multiple transactions can be executed simultaneously. 

o It may affect the transaction result. It is highly important to maintain the order of 

execution of those transactions. 

Problems of concurrency control 

Several problems can occur when concurrent transactions are executed in an uncontrolled 

manner. Following are the three problems in concurrency control. 

1. Lost updates 

2. Dirty read 

3. Unrepeatable read 

1. Lost update problem 

o When two transactions that access the same database items contain their operations in 

a way that makes the value of some database item incorrect, then the lost update 

problem occurs. 

o If two transactions T1 and T2 read a record and then update it, then the effect of 

updating of the first record will be overwritten by the second update. 

Example: 



 

 

 

Here, 

o At time t2, transaction-X reads A's value. 

o At time t3, Transaction-Y reads A's value. 

o At time t4, Transactions-X writes A's value on the basis of the value seen at time t2. 

o At time t5, Transactions-Y writes A's value on the basis of the value seen at time t3. 

o So at time T5, the update of Transaction-X is lost because Transaction y overwrites it 

without looking at its current value. 

o Such type of problem is known as Lost Update Problem as update made by one 

transaction is lost here. 

2. Dirty Read 

o The dirty read occurs in the case when one transaction updates an item of the 

database, and then the transaction fails for some reason. The updated database item is 

accessed by another transaction before it is changed back to the original value. 

o A transaction T1 updates a record which is read by T2. If T1 aborts then T2 now has 

values which have never formed part of the stable database. 

Example: 

 

 

 



o At time t2, transaction-Y writes A's value. 

o At time t3, Transaction-X reads A's value. 

o At time t4, Transactions-Y rollbacks. So, it changes A's value back to that of prior to 

t1. 

o So, Transaction-X now contains a value which has never become part of the stable 

database. 

o Such type of problem is known as Dirty Read Problem, as one transaction reads a 

dirty value which has not been committed. 

3. Inconsistent Retrievals Problem 

o Inconsistent Retrievals Problem is also known as unrepeatable read. When a 

transaction calculates some summary function over a set of data while the other 

transactions are updating the data, then the Inconsistent Retrievals Problem occurs. 

o A transaction T1 reads a record and then does some other processing during which the 

transaction T2 updates the record. Now when the transaction T1 reads the record, then 

the new value will be inconsistent with the previous value. 

Example: 

Suppose two transactions operate on three accounts. 

 

 



 

 

o Transaction-X is doing the sum of all balance while transaction-Y is transferring an 

amount 50 from Account-1 to Account-3. 

o Here, transaction-X produces the result of 550 which is incorrect. If we write this 

produced result in the database, the database will become an inconsistent state 

because the actual sum is 600. 

o Here, transaction-X has seen an inconsistent state of the database. 

Concurrency Control Protocol 

Concurrency control protocols ensure atomicity, isolation, and serializability of concurrent 

transactions. The concurrency control protocol can be divided into three categories: 

1. Lock based protocol 

2. Time-stamp protocol 

3. Validation based protocol 

Lock-Based Protocol 

In this type of protocol, any transaction cannot read or write data until it acquires an 

appropriate lock on it. There are two types of lock: 

1. Shared lock: 



o It is also known as a Read-only lock. In a shared lock, the data item can only read by 

the transaction. 

o It can be shared between the transactions because when the transaction holds a lock, 

then it can't update the data on the data item. 

2. Exclusive lock: 

o In the exclusive lock, the data item can be both reads as well as written by the 

transaction. 

o This lock is exclusive, and in this lock, multiple transactions do not modify the same 

data simultaneously. 

There are four types of lock protocols available: 

1. Simplistic lock protocol 

It is the simplest way of locking the data while transaction. Simplistic lock-based protocols 

allow all the transactions to get the lock on the data before insert or delete or update on it. It 

will unlock the data item after completing the transaction. 

2. Pre-claiming Lock Protocol 

o Pre-claiming Lock Protocols evaluate the transaction to list all the data items on 

which they need locks. 

o Before initiating an execution of the transaction, it requests DBMS for all the lock on 

all those data items. 

o If all the locks are granted then this protocol allows the transaction to begin. When the 

transaction is completed then it releases all the lock. 

o If all the locks are not granted then this protocol allows the transaction to rolls back 

and waits until all the locks are granted. 

 

 



3. Two-phase locking (2PL) 

o The two-phase locking protocol divides the execution phase of the transaction into 

three parts. 

o In the first part, when the execution of the transaction starts, it seeks permission for 

the lock it requires. 

o In the second part, the transaction acquires all the locks. The third phase is started as 

soon as the transaction releases its first lock. 

o In the third phase, the transaction cannot demand any new locks. It only releases the 

acquired locks. 

 

 

 

There are two phases of 2PL: 

Growing phase: In the growing phase, a new lock on the data item may be acquired by the 

transaction, but none can be released. 

Shrinking phase: In the shrinking phase, existing lock held by the transaction may be 

released, but no new locks can be acquired. 

In the below example, if lock conversion is allowed then the following phase can happen: 

1. Upgrading of lock (from S(a) to X (a)) is allowed in growing phase. 

2. Downgrading of lock (from X(a) to S(a)) must be done in shrinking phase. 

Example: 



 

 
 

The following way shows how unlocking and locking work with 2-PL. 

Transaction T1: 

o Growing phase: from step 1-3 

o Shrinking phase: from step 5-7 

o Lock point: at 3 

Transaction T2: 

o Growing phase: from step 2-6 

o Shrinking phase: from step 8-9 

o Lock point: at 6 

4. Strict Two-phase locking (Strict-2PL) 

o The first phase of Strict-2PL is similar to 2PL. In the first phase, after acquiring all the 

locks, the transaction continues to execute normally. 



o The only difference between 2PL and strict 2PL is that Strict-2PL does not release a 

lock after using it. 

o Strict-2PL waits until the whole transaction to commit, and then it releases all the 

locks at a time. 

o Strict-2PL protocol does not have shrinking phase of lock release. 

 

 

It does not have cascading abort as 2PL does. 

Timestamp Ordering Protocol 

o The Timestamp Ordering Protocol is used to order the transactions based on their 

Timestamps. The order of transaction is nothing but the ascending order of the 

transaction creation. 

o The priority of the older transaction is higher that's why it executes first. To determine 

the timestamp of the transaction, this protocol uses system time or logical counter. 

o The lock-based protocol is used to manage the order between conflicting pairs among 

transactions at the execution time. But Timestamp based protocols start working as 

soon as a transaction is created. 

o Let's assume there are two transactions T1 and T2. Suppose the transaction T1 has 

entered the system at 007 times and transaction T2 has entered the system at 009 

times. T1 has the higher priority, so it executes first as it is entered the system first. 

o The timestamp ordering protocol also maintains the timestamp of last 'read' and 'write' 

operation on a data. 

Basic Timestamp ordering protocol works as follows: 

1. Check the following condition whenever a transaction Ti issues a Read (X) operation: 

o If W_TS(X) >TS(Ti) then the operation is rejected. 



o If W_TS(X) <= TS(Ti) then the operation is executed. 

o Timestamps of all the data items are updated. 

2. Check the following condition whenever a transaction Ti issues a Write(X) operation: 

o If TS(Ti) < R_TS(X) then the operation is rejected. 

o If TS(Ti) < W_TS(X) then the operation is rejected and Ti is rolled back otherwise the 

operation is executed. 

Where, 

TS(TI) denotes the timestamp of the transaction Ti. 

R_TS(X) denotes the Read time-stamp of data-item X. 

W_TS(X) denotes the Write time-stamp of data-item X. 

Advantages and Disadvantages of TO protocol: 

o TO protocol ensures serializability since the precedence graph is as follows: 

 

 
 

o TS protocol ensures freedom from deadlock that means no transaction ever waits. 

o But the schedule may not be recoverable and may not even be cascade- free. 

Validation Based Protocol 

Validation phase is also known as optimistic concurrency control technique. In the validation 

based protocol, the transaction is executed in the following three phases: 

1. Read phase: In this phase, the transaction T is read and executed. It is used to read 

the value of various data items and stores them in temporary local variables. It can 

perform all the write operations on temporary variables without an update to the 

actual database. 



2. Validation phase: In this phase, the temporary variable value will be validated 

against the actual data to see if it violates the serializability. 

3. Write phase: If the validation of the transaction is validated, then the temporary 

results are written to the database or system otherwise the transaction is rolled back. 

Here each phase has the following different timestamps: 

Start(Ti): It contains the time when Ti started its execution. 

Validation (Ti): It contains the time when Ti finishes its read phase and starts its validation 

phase. 

Finish(Ti): It contains the time when Ti finishes its write phase. 

o This protocol is used to determine the time stamp for the transaction for serialization 

using the time stamp of the validation phase, as it is the actual phase which 

determines if the transaction will commit or rollback. 

o Hence TS(T) = validation(T). 

o The serializability is determined during the validation process. It can't be decided in 

advance. 

o While executing the transaction, it ensures a greater degree of concurrency and also 

less number of conflicts. 

o Thus it contains transactions which have less number of rollbacks. 

Thomas write Rule 

Thomas Write Rule provides the guarantee of serializability order for the protocol. It 

improves the Basic Timestamp Ordering Algorithm. 

The basic Thomas write rules are as follows: 

o If TS(T) < R_TS(X) then transaction T is aborted and rolled back, and operation is 

rejected. 

o If TS(T) < W_TS(X) then don't execute the W_item(X) operation of the transaction 

and continue processing. 

o If neither condition 1 nor condition 2 occurs, then allowed to execute the WRITE 

operation by transaction Ti and set W_TS(X) to TS(T). 

If we use the Thomas write rule then some serializable schedule can be permitted that does 

not conflict serializable as illustrate by the schedule in a given figure: 



 

 

Figure: A Serializable Schedule that is not Conflict Serializable 

In the above figure, T1's read and precedes T1's write of the same data item. This schedule 

does not conflict serializable. 

Thomas write rule checks that T2's write is never seen by any transaction. If we delete the 

write operation in transaction T2, then conflict serializable schedule can be obtained which is 

shown in below figure. 

 

 

Figure: A Conflict Serializable Schedule 

 

Recovery with Concurrent Transaction 

o Whenever more than one transaction is being executed, then the interleaved of logs 

occur. During recovery, it would become difficult for the recovery system to 

backtrack all logs and then start recovering. 

o To ease this situation, 'checkpoint' concept is used by most DBMS. 

 

References: 

[1] https://www.javatpoint.com/ 

[2] https://www.wikipedia.org/ 

 

 

https://www.javatpoint.com/


 


