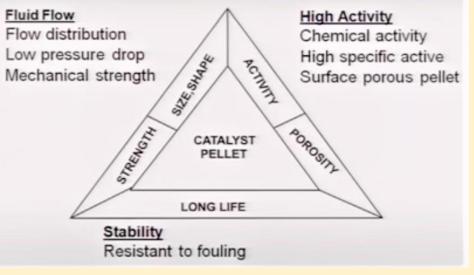
Solid catalysts

Book: Chemical Engineering Kinetics, J. M. Smith, 2nd Edition (Chapter 8), 3rd Edition (Chapter 8)

General requirements for a good catalyst

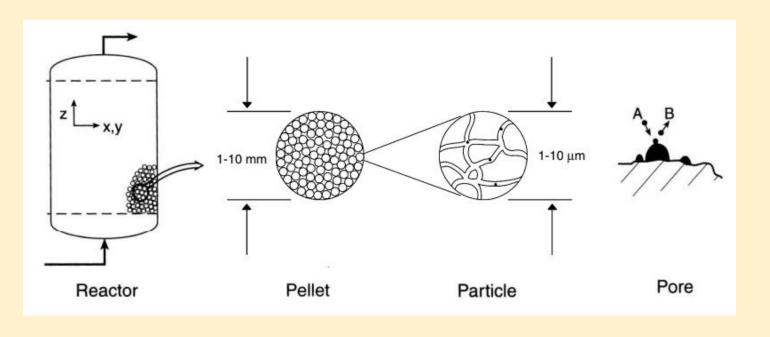
• Activity


- should be able to promote the rate of the desired reaction
- needs to adsorb the reactant molecules strongly enough for them to react, but not so strongly that the
 product molecules stick more or less permanently to the surface

• Selectivity

- should be able to promote only the rate of the desired reaction and retard the undesired reaction
- selectivity is sometimes considered to be more important than activity and may be more difficult to achieve
- Stability
 - should be able to resist deactivation caused by impurities, thermal deterioration or attrition

Shape, size and porosity


- Porous catalysts provide high internal surface area, larger number of active sites, chances of better dispersion
- Catalyst shape and size should be such that to provide low pressure drop – large particles provide low pressure drop but has high internal mass transfer resistance
- Catalyst should have **sufficient mechanical strength** to avoid breakage during reaction and loading

https://nptel.ac.in/courses/103/102/103102012

Porous catalyst pellet

- Solid catalysts are normally porous it is difficult to obtain large outer surface area (> 1 m²/g) by sub dividing non-porous solids into smaller particles
- Size of the catalyst pellet used in a commercial reactor can typically range from 1–10 mm
- The pellet is usually composed of **smaller particles** frequently on **the order of 1** μ m that are held together by a binder added during the catalyst preparation process
- These smaller particles are usually porous and contain micropores (pore diameter ≤ 2 nm) and mesopores (2 nm < pore diameter ≤ 50 nm)
- Macropores (pore diameter > 50 nm) can also exist which can be dependent on the size and packing density of these small particles

https://nptel.ac.in/courses/103/102/103102012

Catalyst preparation

Bulk or unsupported catalysts

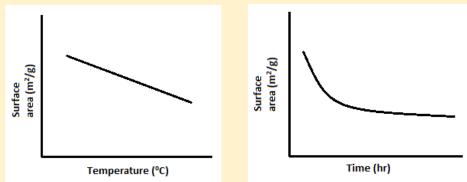
- Entire catalyst consists of the catalytically active substance
- Catalysts are prepared by (i) precipitation or (ii) gel formation

Precipitation – method of obtaining solid material in a porous form Involves (a) adding a precipitating agent to solutions of desired component

(b) washing	(c) drying
(d) calcination	(e) activation (in some cases)

Example: MgO catalyst is prepared by precipitating Mg salt from a nitrate solution by adding sodium carbonate

$Mg(NO_3)_2 + Na_2CO_3 \rightarrow MgCO_3 \downarrow + 2NaNO_3$
washed with water to remove all traces of sodium
\downarrow filtration
wet paste dried at room temperature
\downarrow
calcined (treatment at high temp; $MgCO_3$ decomposes to MgO and CO_2)

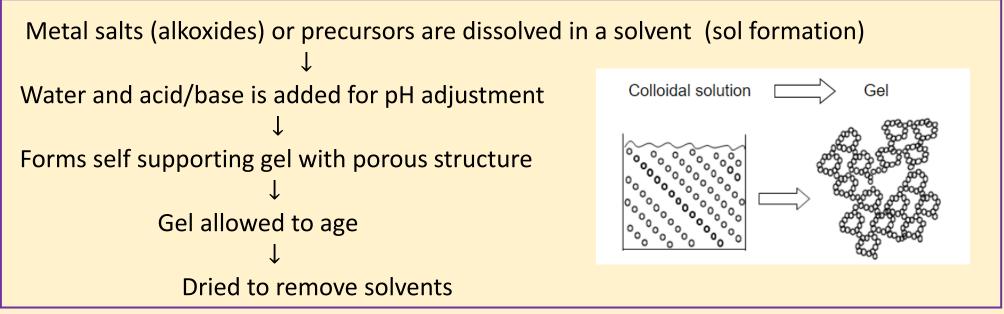

BM-CHE-S402-Chemical Reaction Engineering - II, UIET, CSJM University, Kanpur

Calcination is an important step in catalyst preparation

Calcination, often **the last step in catalyst preparation** is the **heating** of solids **to a high temperature** after the drying process

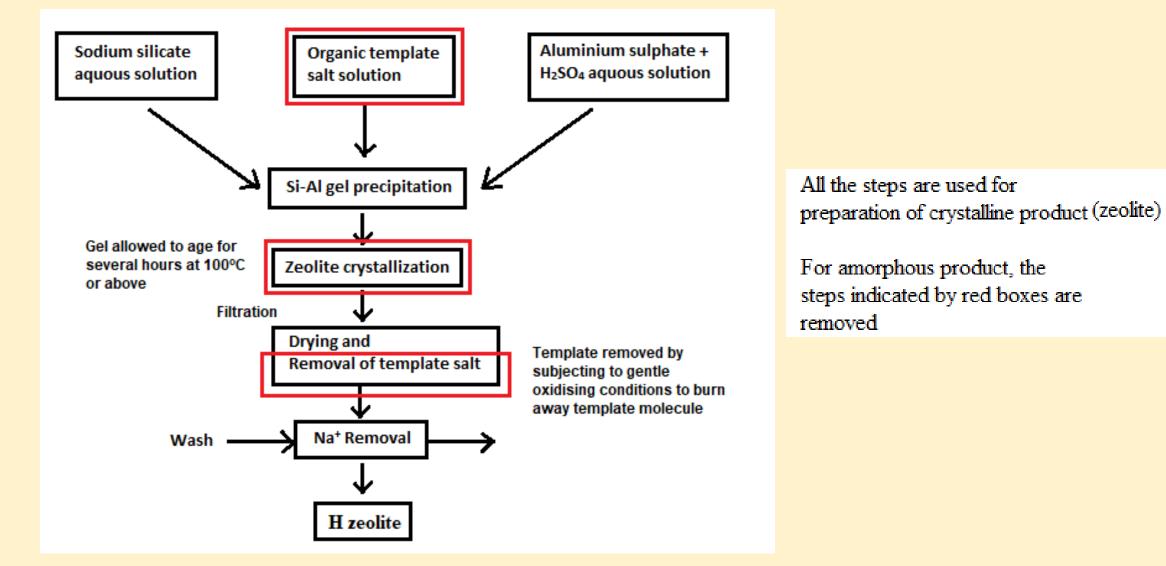
The process of calcination is carried out to –

- **Decompose the precursor** and **remove volatile materials** leads to the <u>formation of a well</u> <u>determined porous structure</u>
- The hydroxide form is converted to oxide form; chemically bound water is removed at higher temperature
- Attain thermal stability catalyst sample is subjected to a more severe heating treatment than that is likely to encounter in a reactor to ensure the <u>stability of its textural and structural</u> properties during reaction
- Surface area often decreases with temperature and time - material calcined beyond reaction temperature so there is no collapse of surface area during reaction



• Higher temperature cause material to **crystallize into different structural forms** $Al_2O_3(\delta)_{cubic} \rightarrow Al_2O_3(\theta)_{monoclinic} \rightarrow Al_2O_3(\alpha)_{hexagonal}$

Bulk or unsupported catalysts


Sol-gel method

- This is a special case of precipitation method for catalysts containing silica and alumina precipitate is colloidal nature
- Main steps involved are:

- <u>Drying</u> step needs to be <u>carried out carefully</u> so that <u>porous structure does not collapse</u>
- Special methods such as supercritical extraction and use of cryogenic conditions are used for drying of liquid in gels

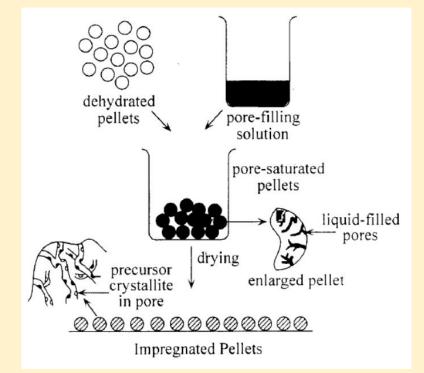
Preparation of silica-alumina bulk catalysts (amorphous) or zeolites (crystalline)

Catalyst preparation

Supported or impregnated catalysts

- Prepared by impregnation of preformed supports with solution of active catalytic species
- Main purpose of using a support is to achieve a large surface area with optimal dispersion of the catalytically active component and to stabilize it against sintering
- Supported catalysts are prepared in two main steps :
 - 1. <u>Deposition of precursors of active catalytic species</u> on the support
 - 2. <u>Transformation</u> of this deposited precursors to catalytically active site
- The final active component can be in **metallic state**, **oxide form** or **reduced form** depending on the requirements
- Active catalytic species are deposited using three methods (i) ion exchange

(ii) wet and dry impregnation

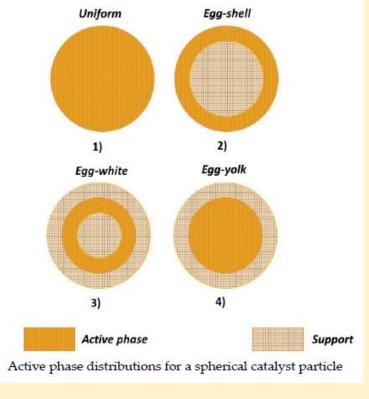

(iii) deposition - precipitation

Ion exchange method

- Ion exchange consists of **replacing an ionic species by another ionic species** in electrostatic interaction of the precursors with the surface of a support
- Support (containing the ion A)is dipped into a solution of metal precursor (containing ion B) for a sufficient amount of time
- Ion B gradually **penetrates into the pore space of the support** and takes the place of ion A, which passes into the solution
- This **continues until an equilibrium is established** corresponding to a given distribution of the two ions between the solid and solutions
- The support is then removed from solution, dried and calcined
- The position of the metal ions are fixed, there is no maldistribution during the drying process
- The achievable loading is limited by (i) ion-exchange capacity or/and (ii) saturation concentration of solution
- Important method for microporous supports or the pores may get clogged

Impregnation method (Wet and Dry)

- Support is dehydrated (evacuated) of adsorbed moisture and impurities by treating at high temperatures
- It is then immersed in the solution of precursor (metal salt solution) and the pores of the support are allowed to be filled up by this metal salt solution of a given concentration depending on the loading desired
- Impregnation is followed by elimination of the solvent. The excess solution is dried (for wet impregnation) and then the dried catalyst is calcined
- In some cases, the calcination step may be followed by activation



CH₄ Reforming for Synthesis Gas Production over Supported Ni Catalysts, Hoon Sub Song

- Example: Ni/Al₂O₃ hydrogenation catalyst is prepared by soaking the evacuated Al₂O₃ in Ni(NO₃)₂ solution, drying the excess solution and calcining it to form NiO from Ni(NO₃)₂. The final step is to convert NiO to Ni by reducing it in situ in H₂ just before the reaction
- Dry impregnation or Incipient Wetness Impregnation the evacuated support is contacted with as much active metal precursor solution to just fill the pores in the support (solution volume = pore volume of support), then dried at room temperature, and finally calcined

Deposition-Precipitation

- Method involves dispersing the support in solution and then adding the precipitation agent for precipitating the active material
- The active component can be homogeneously distributed throughout the support particles (uniform) or form an egg-shell on the outer surface
- Other possibilities of distribution of the active agent is the egg white and the egg yolk type
- Active phase distribution profile can be obtained by proper selection of impregnation parameters like choice of precursor, pH, time of contact, drying process
- Uniform distribution of active agent is usually desired when transport limitations are not expected
- Egg-shell distribution is useful when the active phase is expensive, transport limitations are present or when secondary reaction needs to be avoided

Russo et. Al., ChemEngineering 2020, 4(2), 24

- If the **reactant feed consists of catalytic poisons**, it is better to deposit the active component inside the subsurface layer, and have an **egg white distribution**
- Catalyst effectiveness factors larger than one can be achieved for exothermic reactions, if the active metal is located inside the support (egg yolk) making advantage of heat transport resistances

Catalyst preparation

Mixed agglomerated (co-precipitated) catalyst

- Involves the co-precipitation of both support precursor and catalytic species precursor
- Often used to prepare non-precious metal catalysts

Eg., $Ni(NO_3)_2 + Al(NO_3)_3 + Na_2CO_3 \rightarrow NiCO_3 \downarrow + Al(CO_3)_3 + NaNO_3$

- Maintaining the pH is very important in this process pH determines whether precipitation occurs simultaneously (desired) or sequentially
- A flocculated multi-component precipitate is formed in which the catalytic metal microcrystals are each surrounded by support precursor crystals
- The surrounding support crystals prevent the metal crystals from coming together and sintering
- Precipitate is then thoroughly washed, filtered, dried and calcined (to form oxides from hydroxides and carbonates)