Fluid-fluid Reaction: Kinetics and Reactor Design

Book: Chemical Reaction Engineering, O. Levenspiel, (Chapter 23 and 24), 3rd Edition, Wiley and Sons

Case A: Instantaneous Reaction with respect to Mass Transfer, low C_B

- The reaction is <u>extremely fast</u> and an element of <u>liquid can either contain A or B but not both</u>
- The <u>reaction occurs</u> at a <u>plane between A containing and B containing liquid</u>
- Since reactants must diffuse to this reaction plane, the <u>diffusion of</u> <u>A and B will determine the rate</u>, so that a change in $\underline{p_A}$ or $\underline{C_B}$ will move the plane one way or the other
- At steady state, the flowrate of *B* towards the reaction zone will be *b* times the flow rate of *A* towards the reaction zone

• Thus,
$$-r_A'' = \frac{-r_B''}{b} = k_{Ag}(p_A - p_{Ai})$$

= $k_{AL}(C_{Ai} - 0)\frac{x_0}{x} = \frac{k_{BL}}{b}(C_B - 0)\frac{x_0}{x_0 - x}$

 $(-r_A'')$ is based on interfacial area

- k_{Ag} and k_{AL} , k_{BL} are gas and liquid mass transfer coefficients
- Liquid side coefficients are for straight mass transfer and are based on flow through the entire film of thickness x₀
- At the interface, $p_{Ai} = H_A C_{Ai}$

Chemical Reaction Engineering, O. Levenspiel

• If the movement of the material within the film is visualized to occur by diffusion alone,

$$\frac{k_{AL}}{k_{BL}} = \frac{\frac{D_{AL}}{\chi_o}}{\frac{D_{BL}}{\chi_o}} = \frac{D_{AL}}{D_{BL}}$$

• Eliminating x, x_0, p_{Ai} and C_{Ai} within the previous three equations we get,

$$-r_A^{\prime\prime} = -\frac{1}{S} \frac{dN_A}{dt} = \frac{\frac{D_{BL}}{D_{AL}} \frac{C_B}{b} + \frac{p_A}{H_A}}{\frac{1}{H_A k_{Ag}} + \frac{1}{k_{AL}}}$$

for
$$k_{Ag}p_A > \frac{k_{BL}C_B}{b}$$

Special case: For <u>negligence gas phase resistance</u> (in case pure A is used in gas phase, $p_A = p_{Ai}$), $k_{Ag} \rightarrow \infty$, the above equation is,

$$-r_A^{\prime\prime} = k_{AL}C_{Ai}\left(1 + \frac{D_{BL}}{D_{AL}}\frac{C_B}{bC_{Ai}}\right)$$

Here, we define a new term called the *enhancement factor*

Enhancement factor indicates how the mass transfer rate is enhanced by means of chemical reaction

The maximum rate of physical mass transfer = $k_{AL}C_{Ai}$

En	ancoment factor (E).	Rate of absorption of A with reaction			
	in liquid film	Rate of absorption of A with straight mass transfer			
		$-r_A^{\prime\prime} = k_{AL} C_{Ai} E_i$			
where	$E_i = 1 + \frac{D_{BL}}{D_{AL}} \frac{C_B}{bC_{Ai}}$				

 E_i is the enhancement factor for infinitely fast reaction

The value of E is always > or equal to 1

Case B: Instantaneous Reaction with high C_B

- If the concentration of B is high, i.e., if $k_{Ag}p_A \leq \frac{k_{BL}C_B}{b}$, the reaction zone moves to and stays at the interface (x = 0) rather than remain in the liquid film
- Here the resistance of the gas phase controls, and the rate is not affected by any further increase in the concentration of B

$$-r_A^{\prime\prime} = -\frac{1}{S}\frac{dN_A}{dt} = k_{Ag}p_A$$

Chemical Reaction Engineering, O. Levenspiel

- Before studying the other case (Case C to H) it is important to <u>define a general rate equation which is</u> <u>applicable for reactions of different rates</u>
- The general rate expression showing the influence of both mass transfer and reaction rate is given as

$$-r_A^{\prime\prime\prime} = \frac{p_A}{\frac{1}{ak_{Ag}} + \frac{H_A}{k_{AL}aE} + \frac{H_A}{kC_Bf_L}}$$

where E is the liquid film enhancement factor

- Enhancement factor (*E*) tells us how the chemical reaction has a positive influence on the absorption of gas
- *E* is dependent on two quantities:

•

- E_i (enhancement factor for infinitely fast rxn) - M_H^2 (Hatta number)

 $M_{H}^{2} = \frac{maximum\ possible\ conversion\ in\ the\ film}{maximum\ diffusional\ transport\ through\ the\ film}$

$$M_{H}^{2} = \frac{kC_{Ai}C_{B}x_{o}}{\frac{D_{AL}}{x_{o}} \cdot C_{Ai}} = \frac{kC_{B}D_{AL}}{k_{AL}^{2}}$$
$$\therefore k_{AL} = \frac{D_{AL}}{x_{o}}$$
$$M_{H} = x_{o} \sqrt{\frac{kC_{B}}{D_{AL}}}$$

(similar to Thiele modulus defined for gas – solid catalytic reactions)

BM-CHE-S402-Chemical Reaction Engineering - II, UIET, CSJM University, Kanpur

Chemical Reaction Engineering, O. Levenspiel

Case C: Fast reaction, low C_B

- The plane of reaction as seen in Case A now spreads into a zone of reaction in which A and B are both present
- The <u>reaction is fast enough so that the reaction zone remains</u> <u>totally within the liquid film</u>
- No A enters the main body of the liquid to react there
- As the reaction rate is high, the resistance due to reaction is negligible

$$-r_A^{\prime\prime\prime} = \frac{p_A}{\frac{1}{ak_{Ag}} + \frac{H_A}{k_{AL}aE}}$$

• For the fast, second order reaction in film

$$5E_i > M_H > \frac{E_i}{5}$$

Chemical Reaction Engineering, O. Levenspiel

Case D: Fast reaction, high C_B, pseudo first order with respect to A

- When the <u>concentration of B is high, its concentration does</u> <u>not drop appreciably within the film and can be taken to be</u> <u>constant</u>
- The <u>second order reaction then reduces to a pseudo first</u> <u>order expression</u>

$$-r_A^{\prime\prime\prime} = \frac{p_A}{\frac{1}{ak_{Ag}} + \frac{H_A}{k_{AL}aE}}$$

Replacing the value of E we have,

If $E_i > 5M_H$, then there is a pseudo first order reaction

and $E \cong M_H$

Case D (pseudo-first order)

Chemical Reaction Engineering, O. Levenspiel

Case E and F: Intermediate reaction rate with respect to mass transfer

- Here the reaction is slow enough for some A to diffuse through the film into the main body of the fluid
- Consequently, <u>A reacts both within the film and</u> in the main body of the fluid

• In these cases, the general rate expression showing all the three resistances are used

Case G: Slow reaction rate with respect to mass transfer

 For this case, <u>all reactions occur in the main body of the liquid</u> but the <u>film still provides a resistance to the transfer of A into</u> <u>the main body of the fluid</u>

$$-r_A^{\prime\prime\prime} = \frac{p_A}{\frac{1}{k_{Ag}a} + \frac{H_A}{k_{AL}a} + \frac{H_A}{kC_B f_L}}$$

BM-CHE-S402-Chemical Reaction Engineering - II, UIET, CSJM University, Kanpur

 $E \approx 1$

Case H: Infinitely slow reaction

- Here the mass transfer resistance is negligible
- The composition of A and B are uniform in the liquid and rate is determined by kinetics alone

$$-r_A^{\prime\prime\prime} = \frac{kf_l}{H_A} p_A C_B = kf_l C_A C_B$$

Case H

Chemical Reaction Engineering, O. Levenspiel

Role of Hatta Number, M_H

$$M_H = x_o \sqrt{\frac{kC_B}{D_{AL}}} = \frac{\sqrt{kC_B D_{AL}}}{k_{AL}}$$

- If M_H >> 1, all reaction occurs in the film (high reaction rate) and "surface area" is the rate controlling factor
- If $M_H \ll 1$, no reaction occurs in the film, and "bulk volume" becomes the controlling factor

- If $M_H > 2$, reaction occurs in the film (Case A, B, C, D)
- If $0.02 < M_H < 2$, intermediate case (Case E, F, G)
- If $M_H < 0.02$, infinitely slow reaction, reaction in bulk (Case H)

- If *M_H* is large, a contacting device which develops or creates a large interfacial area is used
- If *M_H* is very small, a large volume of liquid is required
- Agitation helps to create large interfacial area and is of use if M_H is large and is ineffective for small M_H
- For fast reaction, large M_H spray or plate columns
- For slow reaction, small M_H bubble columns

Kinetic regime from solubility data

- For reactions occurring in the film, the phase distribution coefficient *H*_A can suggest whether gas phase resistance is important or not
- For straight mass transfer,

$$-r_A^{\prime\prime} = -\frac{1}{S} \frac{dN_A}{dt} = \frac{\Delta p_A}{\frac{1}{k_{Ag}} + \frac{H_A}{k_{AL}}}$$

H _A values (Pa m³/mol)								
	N ₂	H ₂	02	СО	CO ₂	NH ₃		
20°C	1.45 x 10 ⁵	1.23 x 10 ⁵	0.74 x 10 ⁵	0.96 x 10 ⁵	2600	0.020		
60°C	2.16 x 10 ⁵	1.34 x 10 ⁵	1.13 x 10 ⁵	1.48 x 10 ⁵	6300	0.096		

Gases are more soluble at lower temperature

- For <u>slightly soluble gases</u>, H_A is large and the <u>liquid film resistance term is large</u> the opposite is true for highly soluble gases
- Liquid film resistance controls for slightly soluble gases while gas film resistance controls for highly soluble gases
- Since <u>a highly soluble gas is easy to absorb and has its main resistances in the gas phase</u>, it is <u>not necessary to add</u> <u>a liquid phase reactant to promote absorption</u>
- For a <u>sparingly soluble gas which is difficult to absorb</u> and has its <u>main resistance in the liquid phase</u>, a <u>reaction in</u> <u>the liquid phase would be highly beneficial</u>

Example

Gaseous A absorbs and reacts with B in liquid according to

$$A(g \to l) + B(l) \to R(l) \qquad -r_A = kC_A C_B$$

in a packed bed under conditions where

 $k_{Aq}a = 0.1 \text{ mol/h.m}^2 \text{ of reactor. Pa}$ $k_{AL}a = 100 \text{ m}^3 \text{ liquid/m}^3 \text{ reactor. h}$ $f_l = 0.01 \text{ m}^3 \text{ liquid/m}^3 \text{ reactor}$

 $a = 100 \text{ m}^2/\text{m}^3 \text{ reactor}$

 $D_{AL} = D_{BL} = 10^{-6} \text{ m}^2/\text{h}$

At a point in the reactor where $p_A = 100$ Pa and $C_B = 100$ mol/m³ liquid

- (a) Calculate the rate of reaction in mol/h.m³ of reactor
- (b) Location of the major resistance (gas film, liquid film, main body of liquid)
- (c) Behaviour in liquid film (pseudo first order, instantaneous second order, physical transport)

For the following two cases – (i) $k = 10 \text{ m}^3$ liquid/mol. h $H_A = 10^5 \text{ Pa.m}^3$ liquid/mol

(ii) $k = 10^6 \text{ m}^3$ liquid/mol. h $H_A = 10^4 \text{ Pa.m}^3$ liquid/mol

(i)
$$M_H = \frac{\sqrt{kC_B D_{AL}}}{k_{AL}} = \frac{\sqrt{10 \times 100 \times 10^{-6}}}{\frac{100}{100}} = 3.16 \times 10^{-2}$$
 $\therefore E = 1$
(a) $-r_A^{\prime\prime\prime\prime} = \frac{p_A}{\frac{1}{ak_{Ag}} + \frac{H_A}{k_{AL}aE}} = \frac{100}{\frac{1}{0.1} + \frac{10^5}{100 \times 1} + \frac{10^5}{10 \times 100 \times 0.01}} = \frac{100}{10 + 10000} = \frac{100}{11010} = 9.08 \times 10^{-3} \text{ mol/h.m}^3.\text{s}$

BM-CHE-S402-Chemical Reaction Engineering - II, UIET, CSJM University, Kanpur

(b) Resistances: 91% in liquid body
$$\left(\frac{10000}{11010} \times 100 = 90.8\%\right)$$

9% in liquid film $\left(\frac{1000}{11010} \times 100 = 9.08\%\right)$

(c) Liquid film: physical transport

(ii)
$$M_{H} = \frac{\sqrt{kC_{B}D_{AL}}}{k_{AL}} = \frac{\sqrt{10^{6} \times 100 \times 10^{-6}}}{\frac{100}{100}} = 10$$
$$E_{i} = 1 + \frac{D_{BL}}{D_{AL}} \frac{C_{B}}{bC_{Ai}} = 1 + \frac{D_{BL}}{D_{AL}} \frac{C_{B}H_{A}}{bp_{Ai}} = 1 + \frac{10^{-6}}{10^{-6}} \frac{100 \times 10^{4}}{100} = 1 + 10^{4} = 10001$$
$$\therefore \quad E_{i} > 5M_{H}, \text{ and} \quad E \cong M_{H}$$

(a)
$$-r_A''' = \frac{p_A}{\frac{1}{ak_{Ag}} + \frac{H_A}{k_{AL}aE} + \frac{H_A}{kC_Bf_L}} = \frac{100}{\frac{1}{0.1} + \frac{10^4}{100 \times 10} + \frac{10^4}{10^6 \times 100 \times 0.01}} = \frac{100}{10 + 10 + 0.01} = \frac{100}{20.01} = 4.9975 \text{ mol/h.m}^3.\text{s}}$$

(b) Resistances: 50% in gas film $\left(\frac{10}{20.01} \times 100 = 49.98\%\right)$
50% in liquid film $\left(\frac{10}{20.01} \times 100 = 49.98\%\right)$

Reaction zone: Gas-liquid interface (pseudo first order reaction)

(c) Liquid film: Reaction in liquid film