Fluid-fluid Reaction: Kinetics and Reactor Design

Book: Chemical Reaction Engineering, O. Levenspiel, (Chapter 23 and 24), 3rd Edition, Wiley and Sons

Example

For the system described in the earlier example (concentration of impurity reduced from 0.1% to 0.02%) a reactant *B* having a high concentration is added to the water in the liquid phase. Concentration of *B* is 0.8 N (800 mol/m³). *B* reacts with *A* very rapidly such that $k = \infty$

 $A(g \rightarrow l) + B(l) \rightarrow products(l)$

Find the height of the tower required for counter current operations

Assume the diffusivities of A and B in water are the same $k_{AL} = k_{BL} = k_L$

The solution strategy for such problems is:

Step 1. Write the material balance and find C_{B_2} in the exit stream. **Step 2.** Next it is necessary to determine which specific form of rate equation is applicable in this case

Step 3. Finally the height of the tower is calculated

Step 1. At any point in the absorption tower,
$$p_A - p_{A_1} = \frac{F_l \pi}{F_g C_T} (C_{B_1} - C_B)$$

 $p_A - 20 = \frac{7 \times 10^5 \times 10^5}{1 \times 10^5 \times 56000} (800 - C_B)$

 $p_A - 20 = 10000 - 12.5 C_B$

 $p_A = 10020 - 12.5C_B$

Now, C_{B_2} is determined from $p_{A_2} = 10020 - 12.5C_{B_2}$ $C_{B_2} = \frac{10020 - p_{A_2}}{12.5} = \frac{10020 - 100}{12.5} = 793.6 \text{ mol/m}^3$

Step 2 The correct form of the rate equation has to be determined – this is a case of instantaneous reaction, therefore it is either Case A or Case B

It is necessary to find out whether
$$k_{Ag}p_A$$
 is > or < $\frac{k_{BL}C_B}{b}$

At the top of the tower,

$$k_{Ag}ap_A = 0.32 \times 20 = 6.4 \text{ mol/h.m}^3$$

 $k_{Ag}ap_A = 0.32 \times 100 = 32 \text{ mol/h.m}^3$

 $\frac{k_{BL}aC_B}{b} = 0.1 \text{ x } 800 = 80 \text{ mol/h.m}^3 \qquad k_{Ag}p_A < \frac{k_{BL}C_B}{b}$

At the bottom of the tower,

$$\frac{k_{BL}aC_B}{b} = 0.1 \text{ x } 793.6 = 79.36 \text{ mol/h.m}^3 \qquad k_{Ag}p_A < \frac{k_{BL}C_B}{b}$$

For both the top and bottom of the tower, $k_{Ag}p_A < \frac{k_{BL}C_B}{b}$ Hence, it is **case B**

Step 3 For case B, $(-r_A'') = (-r_A'')a = k_{Ag}ap_A = 0.32 p_A$ F_q

$$h = \frac{\overline{A_{cs}}}{\pi} \int_{p_{A1}}^{p_{A2}} \frac{dp_A}{(-r_A^{\prime\prime\prime})} = \frac{1 \times 10^5}{10^5} \int_{20}^{100} \frac{dp_A}{0.32 \ p_A} = \frac{1}{0.32} \ln \frac{100}{20} = 5.03$$

h = 5.03 m

Example

Repeat the previous example using a feed of $C_B = 32 \text{ mol/m}^3$ instead of 800 mol/m³ (i)

In the next case use a feed of $C_B = 128 \text{ mol/m}^3$ (ii)

(i) **Step 1.** At any point in the absorption tower, $p_A - p_{A_1} = \frac{F_I \pi}{F_a C_T} (C_{B_1} - C_B)$ $p_A - 20 = \frac{7 \times 10^5 \times 10^5}{1 \times 10^5 \times 56000} (32 - C_B)$ $p_A - 20 = 400 - 12.5 C_B$

 $p_A = 420 - 12.5C_B$

Now, $C_{B_2} = \frac{420 - p_{A_2}}{12.5} = \frac{420 - 100}{12.5} = 25.6 \text{ mol/m}^3$

Step 2 Now, It is necessary to find out whether $k_{Ag}p_A$ is > or $<\frac{k_{BL}C_B}{h}$, so as to ascertain whether it is case A or case B At the top of the tower,

$$k_{Ag}ap_A = 0.32 \times 20 = 6.4 \text{ mol/h.m}^3$$

At the bottom of the tower

$$k_{Ag}ap_A = 0.32 \times 100 = 32 \text{ mol/h.m}^3$$

 $\frac{k_{BL}aC_B}{h} = 0.1 \text{ x } 32 = 3.2 \text{ mol/h.m}^3$ $k_{Ag}p_A > \frac{k_{BL}C_B}{h}$

$$\frac{k_{BL}aC_B}{b} = 0.1 \text{ x } 25.6 = 2.56 \text{ mol/h.m}^3$$

$$k_{Ag}p_A > \frac{k_{BL}C_B}{b}$$

For both the top and bottom of the tower, $k_{Ag}p_A > \frac{k_{BL}C_B}{h}$ Hence, it is case A

For case A,

$$(-r_A''') = (-r_A'')a = \frac{\frac{D_{BL}C_B}{D_{AL}b} + \frac{p_A}{H_A}}{\frac{1}{H_Ak_{Ag}a} + \frac{1}{k_{AL}a}}$$
$$(-r_A''') = (-r_A'')a = \frac{H_AC_B + p_A}{\frac{1}{k_{Ag}a} + \frac{H_A}{k_{AL}a}}$$
$$-r_A''') = \frac{12.5 \times \left[\frac{420 - p_A}{12.5}\right] + p_A}{\frac{1}{0.32} + \frac{12.5}{0.1}} = \frac{420}{128.125} = 3.278$$
$$h = \frac{\frac{F_g}{A_{cs}}}{\pi} \int_{p_{A1}}^{p_{A2}} \frac{dp_A}{(-r_A''')}$$
$$h = \frac{1 \times 10^5}{10^5} \int_{20}^{100} \frac{dp_A}{3.278} = \frac{1}{3.278} (100 - 20) = 24.4$$
$$h = 24.4 \text{ m}$$

(-

(i) Step 1. At any point in the absorption tower,
$$p_A - p_{A_1} = \frac{F_I \pi}{F_g C_T} (C_{B_1} - C_B)$$

 $p_A - 20 = \frac{7 \times 10^5 \times 10^5}{1 \times 10^5 \times 56000} (128 - C_B)$
 $p_A - 20 = 1600 - 12.5 C_B$
 $p_A = 1620 - 12.5 C_B$
Now, $C_{B_2} = \frac{1620 - p_{A_2}}{12.5} = \frac{1620 - 100}{12.5} = 121.6 \text{ mol/m}^3$
Step 2 Now, It is necessary to find out whether $k_{Ag}p_A$ is > or $<\frac{k_{BL}C_B}{b}$, so as to ascertain whether it is case A or case B
At the top of the tower,
 $k_{Ag}ap_A = 0.32 \times 20 = 6.4 \text{ mol/h.m}^3$
 $\frac{k_{BL}aC_B}{b} = 0.1 \times 128 = 12.8 \text{ mol/h.m}^3$
 $k_{Ag}p_A < \frac{k_{BL}C_B}{b}$
At the top of the tower, $k_{Ag}p_A < \frac{k_{BL}C_B}{b}$
Hence, it is case B
At the bottom of the tower, $k_{Ag}p_A < \frac{k_{BL}C_B}{b}$
At the bottom of the tower, $k_{Ag}p_A < \frac{k_{BL}C_B}{b}$
At the bottom of the tower, $k_{Ag}p_A < \frac{k_{BL}C_B}{b}$
Hence, it is case B
At the bottom of the tower, $k_{Ag}p_A < \frac{k_{BL}C_B}{b}$
Hence, it is case A

BM-CHE-S402-Chemical Reaction Engineering - II, UIET, CSJM University, Kanpur

Chemical Reaction Engineering, O. Levenspiel

It is now necessary to determine the condition at which the transition from Case A to Case B occurs,

$$\begin{aligned} k_{Ag}ap_{A} &= k_{BL}aC_{B} \\ \text{pr. } 0.32 \times p_{A} &= 0.1 \times C_{B} \\ \text{putting this value in the mass balance equation, } p_{A} &= 1620 - 12.5C_{B} \text{ we have,} \\ p_{A'} &= 1620 - 12.5C_{B} &= 1620 - 12.5(3.2p_{A}) \\ \Rightarrow p_{A'} &= \frac{1620}{41} &= 39.5 \text{ Pa} \end{aligned}$$
The height of the tower is estimated considering case B from $p_{A} = 20 \text{ Pa to } p_{A} = 39.5 \text{ Pa} \text{ and case A from } p_{A} = 39.5 \text{ Pa} \text{ or } p_{A} = 100 \text{ Pa} \text{ ,} \\ h &= \frac{F_{g}/A_{CS}}{\pi} \left[\int_{p_{A1}}^{p_{A'}} \frac{dp_{A}}{k_{Ag}ap_{A}} + \int_{p_{A'}}^{p_{A2}} \frac{dp_{A}}{\frac{H_{A}C_{B} + p_{A}}{\frac{1}{k_{A}g}a}} \right] = \frac{10^{5}}{10^{5}} \left[\int_{20}^{39.5} \frac{dp_{A}}{k_{Ag}ap_{A}} + \int_{39.5}^{100} \frac{(100 + 120)}{H_{A}C_{B} + p_{A}}}{H_{A}C_{B} + p_{A}} \right] \\ h &= \frac{10^{5}}{10^{5}} \left[\frac{1}{0.32} \ln \frac{39.5}{20} + \int_{39.5}^{100} \frac{(100 + \frac{12.5}{12.5 \times \frac{162020 - p_{A}}{12.5 \times \frac{1620}{12.5 \times \frac{162020 - p_{A}}{12.5 \times \frac{1602020 - p_{A}}{12.5 \times \frac{160200}{12.5 \times \frac{1602020 - p_{A}}{12.5 \times \frac{160200}{10.5 \times \frac{16020}{10.5 \times$

h = 2.127 + 4.785 = 6.91 m

(4) Mixed flow gas/Mixed flow liquid – Mass Transfer + Reaction in Agitated Tank Reactor

Composition is the same everywhere in the vessel

$$(A \text{ lost by } gas) = \frac{1}{h}(B \text{ lost by liquid}) = (Disappearance of A by reaction)$$

$$F_g\left(Y_{A_{in}} - Y_{A_{out}}\right) = \frac{F_l}{b}\left(X_{B_{in}} - X_{B_{out}}\right) = (-r_A^{\prime\prime\prime})_{at \ exit \ condition} \ V_r$$

For dilute systems,

$$\frac{F_g}{\pi} \left(p_{A_{in}} - p_{A_{out}} \right) = \frac{F_l}{bC_T} \left(C_{B_{in}} - C_{B_{out}} \right) = \left(-r_A^{\prime \prime \prime} \right)_{at \ exit \ condition} V_r$$

- $(-r_A^{\prime\prime\prime})$ is evaluated from known stream compositions and equation solved to get V_r
- If V_r is known and $C_{B_{out}}$ or $p_{A_{out}}$ is to be determined
 - Guess $p_{A_{out}}$
 - Evaluate $C_{B_{out}}$ and then $(-r_A''')$ and V_r
 - If the V_r matches with actual V_r then calculations are stopped, otherwise a new $p_{A_{out}}$ is chosen and calculations iterated

Example

90% of A present in a gas stream has to be removed by absorption in water which contains reactant B

$$A(g \to l) + B(l) \to R(l) \qquad -r_A = kC_A C_B$$

This reaction is carried out in an agitated tank reactor

For gas stream, $F_g = 90000 \text{ mol/h}$ at $\pi = 10^5 \text{ Pa}$ $p_{A_{in}} = 1000 \text{ Pa}$ $p_{A_{out}} = 100 \text{ Pa}$ Physical data: $D = 3.6 \times 10^{-6} \text{ m}^2/\text{h}$ $C_U = 55556 \text{ mol/m}^3 \text{ liquid at all } C_B$ For liquid agitated tank, $F_l = 9000 \text{ mol/h}$ $k_{AL}a = 144 \text{ h}^{-1}$ $C_{Bin} = 5556 \text{ mol/m}^3$ $a = 200 \text{ m}^2/\text{m}^3$ $k_{Ag}a = 0.72 \text{ mol/h.m}^3.\text{Pa}$ $f_l = 0.9$ (a) What volume of contactor is needed? (b) Where does the resistance of absorption reaction lie? Find the above for two cases: (i) when $H_A = 0 \text{ Pa.m}^3/\text{mol}$ and $k = 0 \text{ m}^3/\text{mol.h}$ (straight mass transfer, no B in the system) (ii) when $H_A = 10^5 \text{ Pa.m}^3/\text{mol}$ and $k = 2.6 \times 10^7 \text{ m}^3/\text{mol.h}$

(i)
$$H_A = 0 \text{ Pa.m}^3/\text{mol} \text{ and } k = 0 \text{ m}^3/\text{mol.h}$$

 $M_H = \frac{\sqrt{kC_B D_{AL}}}{k_{AL}} = 0 \quad \text{and} \quad E_i = 1 + \frac{D_{BL}}{D_{AL}} \frac{C_B H_A}{p_{Ai}} = 1 + 0 = 1$
 $(-r_A''') = \frac{p_A}{\frac{1}{k_{Ag}a}} = \frac{100}{\frac{1}{0.72}} = 72$

$$\frac{F_g}{\pi} (p_{A_{in}} - p_{A_{out}}) = (-r_A^{\prime\prime\prime})_{at \ exit \ condition} \ V_r$$
$$V_r = \frac{\frac{F_g}{\pi} (p_{A_{in}} - p_{A_{out}})}{(-r_A^{\prime\prime\prime})_{at \ exit \ condition}} = \frac{\frac{90000}{100000} (1000 - 100)}{72} = 11.25 \ \text{m}^3$$

(ii)
$$H_A = 10^5 \text{ Pa.m}^3/\text{mol} \text{ and } k = 2.6 \times 10^7 \text{ m}^3/\text{mol.h}$$

 $F_g (Y_{A_{in}} - Y_{A_{out}}) = \frac{F_l}{b} (X_{B_{in}} - X_{B_{out}})$
 $90000 \left(\frac{1000}{10^5} - \frac{100}{10^5}\right) = 9000 \left(\frac{5556}{55556} - \frac{C_{B_{out}}}{55556}\right)$
 $0.09 = 0.1 - \frac{C_{B_{out}}}{55556} \implies C_{B_{out}} = 555.96 \text{ mol/m}^3$
 $M_H = \frac{\sqrt{kC_B D_{AL}}}{k_{AL}} = \frac{\sqrt{3.6 \times 10^{-6} \times 555.96 \times 2.6 \times 10^7}}{\frac{144}{200}} = 316.83 \text{ and } E_i = 1 + \frac{D_{BL}}{D_{AL}} \frac{C_B H_A}{p_{Ai}} = 1 + \frac{555.96 \times 10^5}{100} = 555961$

Now,
$$E_i > 5M_H$$
 (555961 > 1584.15) $\therefore E \cong M_H$

$$-r_A^{\prime\prime\prime} = \frac{p_A}{\frac{1}{ak_{Ag}} + \frac{H_A}{k_{AL}aE} + \frac{H_A}{kC_Bf_L}} = \frac{100}{\frac{1}{0.72} + \frac{10^5}{144 \times 316.83} + \frac{10^5}{2.6 \times 10^7 \times 555.96 \times 0.9}} = \frac{100}{1.388 + 2.192 + 7.687 \times 10^{-6}} = \frac{100}{3.572} = 27.995$$

(a)
$$V_r = \frac{\frac{F_g}{\pi} (p_{A_{in}} - p_{A_{out}})}{(-r_A^{\prime\prime\prime})_{at \ exit \ condition}} = \frac{\frac{90000}{100000} (1000 - 100)}{27.995} = 28.933 \text{ m}^3$$

(b) Resistances: 38.86% in gas film
$$\left(\frac{1.388}{3.572} \times 100 = 38.86\%\right)$$

61.37% in liquid film $\left(\frac{2.192}{3.572} \times 100 = 49.98\%\right)$

(5) Plug flow gas/Mixed flow liquid – Mass Transfer + Reaction in Bubble Tank Reactor

Here it is necessary to make a differential balance for the loss of A from the gas because gas is in plug flow and an overall balance for B because liquid is in mixed flow

$$(A \ lost \ by \ gas) = (Disappearance \ of \ A \ by \ reaction)$$

$$F_g dY_A = (-r_A''')|_{L \ at \ exit \ conditions} \ dV_r$$

$$(A \ lost \ by \ gas) = \frac{1}{b} (B \ lost \ by \ liquid)$$

$$F_g \left(Y_{A_{in}} - Y_{A_{out}}\right) = \frac{F_l}{b} \left(X_{B_{in}} - X_{B_{out}}\right)$$

Therefore,

$$V_r = F_g \int_{Y_{Aout}}^{Y_{Ain}} \frac{dY_A}{(-r_A^{\prime\prime})a}$$

with
$$F_g\left(Y_{A_{in}} - Y_{A_{out}}\right) = \frac{F_l}{b}\left(X_{B_{in}} - X_{B_{out}}\right)$$

For dilute systems,

$$V_r = \frac{F_g}{\pi} \int_{p_{Aout}}^{p_{Ain}} \frac{dp_A}{(-r_A'')a}$$

ith
$$\frac{F_g}{\pi} \left(p_{A_{in}} - p_{A_{out}} \right) = \frac{F_l}{bC_T} \left(C_{B_{in}} - C_{B_{out}} \right)$$

- $(-r_A'')a$ is calculated for liquid at $C_{B_{out}}$
- V_r can be calculated from above equation if outlet conditions are known
- If $C_{B_{out}}$ and $p_{A_{out}}$ are to be found in a reactor of known volume V_r , then trial and error method is required
- Guess $C_{B_{out}}$ and then find $(-r_A'')$ and V_r and match with known value

W

(5) Mixed flow gas/Batch uniform liquid – Absorption + Reaction in Batch Agitated Tank Reactor

This is an unsteady state operation

At the start, $C_B = C_{Bo}$ and at the end $C_B = C_{Bf}$

 C_B decreases with time due to reaction with A

$$(A \ lost \ by \ gas) = \begin{pmatrix} Decrease \ of \ B \\ with \ time \end{pmatrix} = \begin{pmatrix} Disappearance \ of \\ A \ or \ B \ by \ reaction \end{pmatrix}$$
$$F_g \left(Y_{A_{in}} - Y_{A_{out}} \right) = -\frac{V_l}{b} \cdot \frac{dC_B}{dt} = (-r_A^{\prime\prime\prime})V_r$$

For dilute systems, $\frac{F_c}{\pi}$

$$\frac{g}{dt}\left(p_{A_{in}} - p_{A_{out}}\right) = -\frac{V_l}{b} \cdot \frac{dC_B}{dt} = (-r_A^{\prime\prime\prime})V_r$$

To find the time needed for a given operation,

- Choose a number of C_B values (C_{Bo} , C_{Bf} and intermediates)
- For each C_B value, guess $p_{A_{out}}$
- Calculate M_H , E_i and then E and $(-r_A''')$
- Check if $(-r_A^{\prime\prime\prime})V_r$ is $=\frac{F_g}{\pi}\left(\frac{p_{A_{in}}}{\pi-p_{A_{in}}}-\frac{p_{A_{out}}}{\pi-p_{A_{out}}}\right)$
- Continue till they match

• Then use the fact that

$$-\frac{V_l}{b}.\frac{dC_B}{dt} = (-r_A^{\prime\prime\prime})V_r$$

To write

$$t = \frac{V_l/V_r}{b} \int_{C_{Bf}}^{C_{Bo}} \frac{dC_B}{(-r_A''')} = \frac{f_l}{b} \int_{C_{Bf}}^{C_{Bo}} \frac{dC_B}{(-r_A''')}$$

Minimum time needed if all A reacts ($p_{A_{out}} = 0$)

$$t_{min} = \frac{\frac{V_l}{b} (C_{Bo} - C_{Bf})}{F_g \left(\frac{p_{A_{in}}}{\pi - p_{A_{in}}}\right)}$$

Efficiency of utilization (% of entering A which reacts with B) = $\frac{t_{min}}{t}$