Fluid-fluid Reaction: Kinetics and Reactor Design

Example

For the system described in the earlier example (concentration of impurity reduced from 0.1% to 0.02%) a reactant B having a high concentration is added to the water in the liquid phase. Concentration of B is 0.8 N
$\left(800 \mathrm{~mol} / \mathrm{m}^{3}\right)$. B reacts with A very rapidly such that $k=\infty$

$$
A(g \rightarrow l)+B(l) \rightarrow \text { products }(l)
$$

Find the height of the tower required for counter current operations
Assume the diffusivities of A and B in water are the same $k_{A L}=k_{B L}=k_{L}$

The solution strategy for such problems is:
Step 1. Write the material balance and find $C_{B_{2}}$ in the exit stream.
Step 2. Next it is necessary to determine which specific form of rate equation is applicable in this case
Step 3. Finally the height of the tower is calculated
Step 1. At any point in the absorption tower, $\quad p_{A}-p_{A_{1}}=\frac{F_{l} \pi}{F_{g} C_{T}}\left(C_{B_{1}}-C_{B}\right)$
$p_{A}-20=\frac{7 \times 10^{5} \times 10^{5}}{1 \times 10^{5} \times 56000}\left(800-C_{B}\right)$
$p_{A}-20=10000-12.5 C_{B}$
$p_{A}=10020-12.5 C_{B}$

Now, $C_{B_{2}}$ is determined from $p_{A_{2}}=10020-12.5 C_{B_{2}}$
$C_{B_{2}}=\frac{10020-p_{A_{2}}}{12.5}=\frac{10020-100}{12.5}=793.6 \mathrm{~mol} / \mathrm{m}^{3}$
Step 2 The correct form of the rate equation has to be determined - this is a case of instantaneous reaction, therefore it is either Case A or Case B
It is necessary to find out whether $k_{A g} p_{A}$ is $>$ or $<\frac{k_{B L} C_{B}}{b}$
At the top of the tower,
$k_{A g} a p_{A}=0.32 \times 20=6.4 \mathrm{~mol} / \mathrm{h} . \mathrm{m}^{3}$

$$
\frac{k_{B L} a C_{B}}{b}=0.1 \times 800=80 \mathrm{~mol} / \mathrm{h} . \mathrm{m}^{3} \quad k_{A g} p_{A}<\frac{k_{B L} C_{B}}{b}
$$

At the bottom of the tower,
$k_{A g} a p_{A}=0.32 \times 100=32 \mathrm{~mol} / \mathrm{h} . \mathrm{m}^{3}$

$$
\frac{k_{B L} a C_{B}}{b}=0.1 \times 793.6=79.36 \mathrm{~mol} / \mathrm{h} . \mathrm{m}^{3}
$$

$$
k_{A g} p_{A}<\frac{k_{B L} C_{B}}{b}
$$

For both the top and bottom of the tower, $k_{A g} p_{A}<\frac{k_{B L} C_{B}}{b}$ Hence, it is case \mathbf{B}
Step 3 For case B, $\quad\left(-r_{A}^{\prime \prime \prime}\right)=\left(-r_{A}^{\prime \prime}\right) a=k_{A g} a p_{A}=0.32 p_{A}$

$$
\begin{gathered}
h=\frac{\frac{F_{g}}{A_{c s}}}{\pi} \int_{p_{A 1}}^{p_{A 2}} \frac{d p_{A}}{\left(-r_{A}^{\prime \prime \prime}\right)}=\frac{1 \times 10^{5}}{10^{5}} \int_{20}^{100} \frac{d p_{A}}{0.32 p_{A}}=\frac{1}{0.32} \ln \frac{100}{20}=5.03 \\
h=5.03 \mathrm{~m}
\end{gathered}
$$

Example

(i) Repeat the previous example using a feed of $C_{B}=32 \mathrm{~mol} / \mathrm{m}^{3}$ instead of $800 \mathrm{~mol} / \mathrm{m}^{3}$
(ii) In the next case use a feed of $C_{B}=128 \mathrm{~mol} / \mathrm{m}^{3}$
(i) Step 1. At any point in the absorption tower, $\quad p_{A}-p_{A_{1}}=\frac{F_{l} \pi}{F_{g} C_{T}}\left(C_{B_{1}}-C_{B}\right)$ $p_{A}-20=\frac{7 \times 10^{5} \times 10^{5}}{1 \times 10^{5} \times 56000}\left(32-C_{B}\right)$
$p_{A}-20=400-12.5 C_{B}$
$p_{A}=420-12.5 C_{B}$

Now, $C_{B_{2}}=\frac{420-p_{A_{2}}}{12.5}=\frac{420-100}{12.5}=25.6 \mathrm{~mol} / \mathrm{m}^{3}$
Step 2 Now, It is necessary to find out whether $k_{A g} p_{A}$ is $>$ or $<\frac{k_{B L} C_{B}}{b}$, so as to ascertain whether it is case A or case B At the top of the tower,
$k_{A g} a p_{A}=0.32 \times 20=6.4 \mathrm{~mol} / \mathrm{h} . \mathrm{m}^{3}$

$$
\frac{k_{B L} a C_{B}}{b}=0.1 \times 32=3.2 \mathrm{~mol} / \mathrm{h} . \mathrm{m}^{3} \quad k_{A g} p_{A}>\frac{k_{B L} C_{B}}{b}
$$

At the bottom of the tower,
$k_{A g} a p_{A}=0.32 \times 100=32 \mathrm{~mol} / \mathrm{h} . \mathrm{m}^{3}$

$$
\frac{k_{B L} a C_{B}}{b}=0.1 \times 25.6=2.56 \mathrm{~mol} / \mathrm{h} . \mathrm{m}^{3}
$$

$$
k_{A g} p_{A}>\frac{k_{B L} c_{B}}{b}
$$

For both the top and bottom of the tower, $k_{A g} p_{A}>\frac{k_{B L} C_{B}}{b}$ Hence, it is case \mathbf{A}

For case A,

$$
\begin{gathered}
\left(-r_{A}^{\prime \prime \prime}\right)=\left(-r_{A}^{\prime \prime}\right) a=\frac{\frac{D_{B L}}{D_{A L}} \frac{C_{B}}{b}+\frac{p_{A}}{H_{A}}}{\frac{1}{H_{A} k_{A g} a}+\frac{1}{k_{A L} a}} \\
\left(-r_{A}^{\prime \prime \prime}\right)=\left(-r_{A}^{\prime \prime}\right) a=\frac{H_{A} C_{B}+p_{A}}{\frac{1}{k_{A g} a}+\frac{H_{A}}{k_{A L} a}} \\
\left(-r_{A}^{\prime \prime \prime}\right)=\frac{12.5 \times\left[\frac{420-p_{A}}{12.5}\right]+p_{A}}{\frac{1}{0.32}+\frac{12.5}{0.1}}=\frac{420}{128.125}=3.278 \\
h=\frac{\frac{F_{g}}{A_{c s}}}{\pi} \int_{p_{A 1}}^{p_{A 2}} \frac{d p_{A}}{\left(-r_{A}^{\prime \prime \prime}\right)} \\
h=\frac{1 \times 10^{5}}{10^{5}} \int_{20}^{100} \frac{d p_{A}}{3.278}=\frac{1}{3.278}(100-20)=24.4 \\
h=24.4 \mathrm{~m}
\end{gathered}
$$

(ii) In the next case use a feed of $C_{B}=128 \mathrm{~mol} / \mathrm{m}^{3}$
(i) Step 1. At any point in the absorption tower, $p_{A}-p_{A_{1}}=\frac{F_{l} \pi}{F_{g} C_{T}}\left(C_{B_{1}}-C_{B}\right)$ $p_{A}-20=\frac{7 \times 10^{5} \times 10^{5}}{1 \times 10^{5} \times 56000}\left(128-C_{B}\right)$
$p_{A}-20=1600-12.5 C_{B}$
$p_{A}=1620-12.5 C_{B}$

Now, $C_{B_{2}}=\frac{1620-p_{A_{2}}}{12.5}=\frac{1620-100}{12.5}=121.6 \mathrm{~mol} / \mathrm{m}^{3}$
Step 2 Now, It is necessary to find out whether $k_{A g} p_{A}$ is $>$ or $<\frac{k_{B L} C_{B}}{b}$, so as to ascertain whether it is case A or case B At the top of the tower,
$k_{A g} a p_{A}=0.32 \times 20=6.4 \mathrm{~mol} / \mathrm{h} . \mathrm{m}^{3}$

$$
\begin{aligned}
& \frac{k_{B L} a C_{B}}{b}=0.1 \times 128=12.8 \mathrm{~mol} / \mathrm{h} . \mathrm{m}^{3} \quad k_{A g} p_{A}<\frac{k_{B L} C_{B}}{b} \\
& \frac{k_{B L} a C_{B}}{b}=0.1 \times 121.6=12.16 \mathrm{~mol} / \mathrm{h} . \mathrm{m}^{3} \quad k_{A g} p_{A}>\frac{k_{B L} C_{B}}{b}
\end{aligned}
$$

At the top of the tower, $k_{A g} p_{A}<\frac{k_{B L} C_{B}}{b}$ Hence, it is case \mathbf{B}
At the bottom of the tower, $k_{A g} p_{A}>\frac{k_{B L} C_{B}}{b}$ Hence, it is case \mathbf{A}

It is now necessary to determine the condition at which the transition from Case \mathbf{A} to Case \mathbf{B} occurs,
$k_{A g} a p_{A}=k_{B L} a C_{B}$
or, $0.32 \times p_{A}=0.1 \times C_{B}$

$$
\text { or, } C_{B}=3.2 p_{A}
$$

Putting this value in the mass balance equation, $p_{A}=1620-12.5 C_{B}$ we have,
$p_{A^{\prime}}=1620-12.5 C_{B}=1620-12.5\left(3.2 p_{A}\right) \quad \Rightarrow \quad p_{A^{\prime}}=\frac{1620}{41}=39.5 \mathrm{~Pa}$
The height of the tower is estimated considering case B from $p_{A}=20 \mathrm{~Pa}$ to $p_{A}=39.5 \mathrm{~Pa}$ and case A from $p_{A}=39.5 \mathrm{~Pa}$ to $p_{A}=100 \mathrm{~Pa}$,

$$
h=\frac{F_{g} / A_{c s}}{\pi} \int_{p_{A 1}}^{p_{A 2}} \frac{d p_{A}}{\left(-r_{A}^{\prime \prime \prime}\right)}
$$

$$
\left.\begin{array}{c}
h=\frac{F_{g} / A_{c S}}{\pi}\left[\int_{p_{A 1}}^{p_{A \prime}} \frac{d p_{A}}{k_{A g} a p_{A}}+\int_{p_{A \prime}}^{p_{A 2}} \frac{d p_{A}}{\left.\frac{H_{A} C_{B}+p_{A}}{\frac{1}{k_{A g} a}+\frac{H_{A}}{k_{A L} a}}\right]=\frac{10^{5}}{10^{5}}\left[\int_{20}^{39.5} \frac{d p_{A}}{k_{A g} a p_{A}}+\int_{39.5}^{100\left(\frac{1}{k_{A g} a}+\frac{H_{A}}{k_{A L} a}\right) d p_{A}}\right.} H_{A} C_{B}+p_{A}\right.
\end{array}\right]=\frac{10^{5}}{10^{5}}\left[\frac{1}{0.32} \ln \frac{39.5}{20}+\int_{39.5}^{100} \frac{\left(\frac{1}{0.32}+\frac{12.5}{0.1}\right) d p_{A}}{12.5 \times\left[\frac{162020-p_{A}}{12.5}\right]+p_{A}}\right]=2.127+\frac{128.125}{1620}(100-39.5) 8 .
$$

(4) Mixed flow gas/Mixed flow liquid - Mass Transfer + Reaction in Agitated Tank Reactor

Composition is the same everywhere in the vessel
(A lost by gas $)=\frac{1}{b}(B$ lost by liquid $)=($ Disappearance of A by reaction $)$
$F_{g}\left(Y_{A_{\text {in }}}-Y_{A_{\text {out }}}\right)=\frac{F_{l}}{b}\left(X_{B_{\text {in }}}-X_{B_{\text {out }}}\right)=\left(-r_{A}^{\prime \prime \prime}\right)_{\text {at exit condition }} V_{r}$
For dilute systems,

$\frac{F_{g}}{\pi}\left(p_{A_{\text {in }}}-p_{A_{\text {out }}}\right)=\frac{F_{l}}{b c_{T}}\left(C_{B_{\text {in }}}-C_{B_{\text {out }}}\right)=\left(-r_{A}^{\prime \prime \prime}\right)_{\text {at exit condition }} V_{r}$

- $\left(-r_{A}^{\prime \prime \prime}\right)$ is evaluated from known stream compositions and equation solved to get V_{r}
- If V_{r} is known and $C_{B_{\text {out }}}$ or $p_{A_{\text {out }}}$ is to be determined -
- Guess $p_{A_{\text {out }}}$
- Evaluate $C_{B_{o u t}}$ and then $\left(-r_{A}^{\prime \prime \prime}\right)$ and V_{r}
- If the V_{r} matches with actual V_{r} then calculations are stopped, otherwise a new $p_{A_{\text {out }}}$ is chosen and calculations iterated

Example

90% of A present in a gas stream has to be removed by absorption in water which contains reactant B

$$
A(g \rightarrow l)+B(l) \rightarrow R(l) \quad-r_{A}=k C_{A} C_{B}
$$

This reaction is carried out in an agitated tank reactor
For gas stream,$\quad F_{g}=90000 \mathrm{~mol} / \mathrm{h}$ at $\pi=10^{5} \mathrm{~Pa} \quad p_{A_{\text {in }}}=1000 \mathrm{~Pa} \quad p_{A_{\text {out }}}=100 \mathrm{~Pa}$
Physical data: $D=3.6 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{h}$
$C_{U}=55556 \mathrm{~mol} / \mathrm{m}^{3}$ liquid at all C_{B}
For liquid agitated tank, $F_{l}=9000 \mathrm{~mol} / \mathrm{h} \quad k_{A L} a=144 \mathrm{~h}^{-1} \quad C_{B i n}=5556 \mathrm{~mol} / \mathrm{m}^{3} \quad a=200 \mathrm{~m}^{2} / \mathrm{m}^{3}$

$$
k_{A g} a=0.72 \mathrm{~mol} / \mathrm{h} \cdot \mathrm{~m}^{3} \cdot \mathrm{~Pa} \quad f_{l}=0.9
$$

(a) What volume of contactor is needed?
(b) Where does the resistance of absorption reaction lie?

Find the above for two cases: (i) when $H_{A}=0 \mathrm{~Pa} . \mathrm{m}^{3} / \mathrm{mol}$ and $k=0 \mathrm{~m}^{3} / \mathrm{mol}$.h (straight mass transfer, no B in the system)
(ii) when $H_{A}=10^{5} \mathrm{~Pa} . \mathrm{m}^{3} / \mathrm{mol}$ and $k=2.6 \times 10^{7} \mathrm{~m}^{3} / \mathrm{mol} . \mathrm{h}$
(i) $H_{A}=0$ Pa. $\mathrm{m}^{3} / \mathrm{mol}$ and $k=0 \mathrm{~m}^{3} / \mathrm{mol} . \mathrm{h}$

$$
\begin{aligned}
& M_{H}=\frac{\sqrt{k C_{B} D_{A L}}}{k_{A L}}=0 \quad \text { and } \quad E_{i}=1+\frac{D_{B L}}{D_{A L}} \frac{C_{B} H_{A}}{p_{A i}}=1+0=1 \\
& \quad\left(-r_{A}^{\prime \prime \prime}\right)=\frac{p_{A}}{\frac{1}{k_{A g} a}}=\frac{100}{\frac{1}{0.72}}=72
\end{aligned}
$$

$$
\begin{aligned}
& \frac{F g}{\pi}\left(p_{A_{\text {in }}}-p_{A_{\text {out }}}\right)=\left(-r_{A}^{\prime \prime \prime}\right)_{\text {at exit condition }} V_{r} \\
& V_{r}=\frac{\frac{F g}{\pi}\left(p_{A_{\text {in }}}-p_{A_{\text {out }}}\right)}{\left(-r_{A}^{\prime \prime \prime}\right)_{\text {at exit condition }}}=\frac{\frac{90000}{100000}(1000-100)}{72}=11.25 \mathrm{~m}^{3}
\end{aligned}
$$

(ii) $\quad H_{A}=10^{5}$ Pa. $\mathrm{m}^{3} / \mathrm{mol}$ and $k=2.6 \times 10^{7} \mathrm{~m}^{3} / \mathrm{mol} . \mathrm{h}$

$$
\begin{aligned}
& F_{g}\left(Y_{A_{\text {in }}}-Y_{A_{\text {out }}}\right)=\frac{F_{l}}{b}\left(X_{B_{\text {in }}}-X_{B_{\text {out }}}\right) \\
& \\
& \\
& 90000\left(\frac{1000}{10^{5}}-\frac{100}{10^{5}}\right)=9000\left(\frac{5556}{55556}-\frac{C_{B_{\text {out }}}}{55556}\right) \\
& \\
& 0.09=0.1-\frac{C_{B_{\text {out }}}}{55556} \\
& M_{H}=\frac{\sqrt{k C_{B} D_{A L}}}{k_{A L}}=\frac{\sqrt{3.6 \times 10^{-6} \times 555.96 \times 2.6 \times 10^{7}}}{144 / 200}=316.83 \quad \text { and } \quad C_{B_{\text {out }}}=555.96 \mathrm{~mol} / \mathrm{m}^{3} \\
&
\end{aligned} \quad E_{i}=1+\frac{D_{B L}}{D_{A L}} \frac{C_{B} H_{A}}{p_{A i}}=1+\frac{555.96 \times 10^{5}}{100}=555961 .
$$

Now, $E_{i}>5 M_{H}(555961>1584.15) \quad \therefore \quad E \cong M_{H}$

$$
-r_{A}^{\prime \prime \prime}=\frac{p_{A}}{\frac{1}{a k_{A g}}+\frac{H_{A}}{k_{A L} a E}+\frac{H_{A}}{k C_{B} f_{L}}}=\frac{100}{\frac{1}{0.72}+\frac{10^{5}}{144 \times 316.83}+\frac{10^{5}}{2.6 \times 10^{7} \times 555.96 \times 0.9}}=\frac{100}{1.388+2.192+7.687 \times 10^{-6}}=\frac{100}{3.572}=27.995
$$

(a) $\quad V_{r}=\frac{\frac{F g}{\pi}\left(p_{A_{\text {in }}}-p_{A_{\text {out }}}\right)}{\left(-r_{A}^{\prime \prime \prime}\right)_{\text {at exit condition }}}=\frac{\frac{90000}{100000}(1000-100)}{27.995}=28.933 \mathrm{~m}^{3}$
(b) Resistances: 38.86% in gas film $\left(\frac{1.388}{3.572} \times 100=38.86 \%\right)$
61.37% in liquid film $\left(\frac{2.192}{3.572} \times 100=49.98 \%\right)$

(5) Plug flow gas/Mixed flow liquid - Mass Transfer + Reaction in Bubble Tank Reactor

Here it is necessary to make a differential balance for the loss of A from the gas because gas is in plug flow and an overall balance for B because liquid is in mixed flow

$$
\begin{gathered}
\text { (A lost by gas })=(\text { Disappearance of } A \text { by reaction }) \\
F_{g} d Y_{A}=\left.\left(-r_{A}^{\prime \prime \prime}\right)\right|_{L \text { at exit conditions }} d V_{r} \\
\hline\left(\begin{array}{l}
(\text { lost by gas }) \\
\\
F_{g}\left(Y_{A_{\text {in }}}-Y_{A_{\text {out }}}\right)=\frac{1}{b}(B \text { lost by liquid }) \\
b \\
\left.F_{B_{\text {in }}}-X_{B_{\text {out }}}\right)
\end{array}\right.
\end{gathered}
$$

Therefore,

$$
V_{r}=F_{g} \int_{Y_{\text {Aout }}}^{Y_{\text {Ain }}} \frac{d Y_{A}}{\left(-r_{A}^{\prime \prime}\right) a} \quad \text { with } \quad F_{g}\left(Y_{A_{\text {in }}}-Y_{A_{\text {out }}}\right)=\frac{F_{l}}{b}\left(X_{B_{\text {in }}}-X_{B_{\text {out }}}\right)
$$

For dilute systems,

$$
V_{r}=\frac{F_{g}}{\pi} \int_{p_{\text {Aout }}}^{p_{\text {Ain }}} \frac{d p_{A}}{\left(-r_{A}^{\prime \prime}\right) a} \quad \text { with } \quad \frac{F_{g}}{\pi}\left(p_{A_{\text {in }}}-p_{A_{\text {out }}}\right)=\frac{F_{l}}{b C_{T}}\left(C_{B_{\text {in }}}-C_{B_{\text {out }}}\right)
$$

- $\left(-r_{A}^{\prime \prime}\right) a$ is calculated for liquid at $C_{B_{\text {out }}}$
- V_{r} can be calculated from above equation if outlet conditions are known
- If $C_{B_{\text {out }}}$ and $p_{A_{\text {out }}}$ are to be found in a reactor of known volume V_{r}, then trial and error method is required
- Guess $C_{B_{o u t}}$ and then find $\left(-r_{A}^{\prime \prime \prime}\right)$ and V_{r} and match with known value

(5) Mixed flow gas/Batch uniform liquid - Absorption + Reaction in Batch Agitated Tank Reactor

This is an unsteady state operation
At the start, $C_{B}=C_{B o}$ and at the end $C_{B}=C_{B f}$
C_{B} decreases with time due to reaction with A
(A lost by gas $)=\binom{$ Decrease of $B}{$ with time }$=\binom{$ Disappearance of }{ A or B by reaction }

$$
F_{g}\left(Y_{A_{\text {in }}}-Y_{A_{\text {out }}}\right)=-\frac{V_{l}}{b} \cdot \frac{d C_{B}}{d t}=\left(-r_{A}^{\prime \prime \prime}\right) V_{r}
$$

For dilute systems, $\frac{F_{g}}{\pi}\left(p_{A_{\text {in }}}-p_{A_{o u t}}\right)=-\frac{V_{l}}{b} \cdot \frac{d C_{B}}{d t}=\left(-r_{A}^{\prime \prime \prime}\right) V_{r}$
To find the time needed for a given operation,

- Choose a number of C_{B} values ($C_{B o}, C_{B f}$ and intermediates)
- For each C_{B} value, guess $p_{A_{\text {out }}}$
- Calculate M_{H}, E_{i} and then E and $\left(-r_{A}^{\prime \prime \prime}\right)$
- Check if $\left(-r_{A}^{\prime \prime \prime}\right) V_{r}$ is $=\frac{F_{g}}{\pi}\left(\frac{p_{A_{\text {in }}}}{\pi-p_{A_{\text {in }}}}-\frac{p_{A_{\text {out }}}}{\pi-p_{A_{\text {out }}}}\right)$
- Continue till they match
everywhere in the tank. However C_{B} decreases with time because of reaction with A.

$$
\text { At the start } C_{\mathrm{B}}=C_{\mathrm{B} 0}
$$

$$
\text { At the end } C_{\mathrm{B}}=C_{\mathrm{B} f}
$$

- Then use the fact that

$$
-\frac{V_{l}}{b} \cdot \frac{d C_{B}}{d t}=\left(-r_{A}^{\prime \prime \prime}\right) V_{r}
$$

To write

$$
t=\frac{V_{l} / V_{r}}{b} \int_{C_{B f}}^{C_{B o}} \frac{d C_{B}}{\left(-r_{A}^{\prime \prime \prime}\right)}=\frac{f_{l}}{b} \int_{C_{B f}}^{C_{B o}} \frac{d C_{B}}{\left(-r_{A}^{\prime \prime \prime}\right)}
$$

Minimum time needed if all A reacts $\left(p_{A_{\text {out }}}=0\right)$

$$
t_{\min }=\frac{\frac{V_{l}}{b}\left(C_{B o}-C_{B f}\right)}{F_{g}\left(\frac{p_{A_{\text {in }}}}{\pi-p_{A_{\text {in }}}}\right)}
$$

Efficiency of utilization (\% of entering A which reacts with B) $=\frac{t_{\text {min }}}{t}$

