Rate equations for fluid-solid reactions (kinetic models)

Developing the rate law for a catalytic reaction

The catalytic reaction to be studied is decomposition of cumene to form benzene and propylene

$$
\begin{array}{cl}
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} & \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{C}_{6} \mathrm{H}_{6} \\
\mathrm{C}=\text { cumene } & \mathrm{P}=\text { propylene } \quad \mathrm{B}=\text { benzene }
\end{array}
$$

Steps in the Langmuir-Hinshelwood mechanism

$$
\begin{array}{l|r}
\hline C+S \\
\text { C.S } S \\
\stackrel{k_{A}}{\stackrel{k_{S}}{\stackrel{k_{-A}}{\rightleftharpoons}} C . S} B . S+P & \text { Adsorption of cumene } \\
\text { B.S } S \underset{k_{-S}}{\stackrel{k_{D}}{\stackrel{\rightharpoonup}{-D}} B+S} & \text { Surface reaction } \\
\text { Desorption of benzene }
\end{array}
$$

Rate laws are written considering each step to be reversible and elementary

Adsorption ($C+S \rightleftharpoons C . S$)

$$
\begin{aligned}
& r_{A}=k_{A} p_{C} C_{v}-k_{-A} C_{C . S} \\
& r_{A}=k_{A}\left[p_{C} C_{v}-\frac{C_{C . S}}{K_{C}}\right]
\end{aligned}
$$

Surface Reaction $\quad(C . S \rightleftharpoons B . S+P)$

$$
\begin{aligned}
& r_{S}=k_{S} C_{C . S}-k_{-S} p_{P} C_{B . S} \\
& r_{S}=k_{S}\left[C_{C . S}-\frac{p_{P} C_{B . S}}{K_{S}}\right]
\end{aligned}
$$

Desorption $\quad(B . S \rightleftharpoons B+S)$

$$
\begin{aligned}
& r_{D}=k_{D} C_{B . S}-k_{-D} p_{B} C_{v} \\
& r_{D}=k_{D}\left[C_{B . S}-\frac{p_{B} C_{v}}{K_{D B}}\right] \\
& r_{D}=k_{D}\left[C_{B . S}-K_{B} p_{B} C_{v}\right]
\end{aligned}
$$

where $\quad K_{S}=\frac{k_{S}}{k_{-S}}$
Unit of r_{S} is $\mathrm{mol} / \mathrm{gcat} . \mathrm{s}, C_{C . S}$ and $C_{B . S}$ is $\mathrm{mol} / \mathrm{gcat}, p_{P}$ in Pa, k_{S} is $1 / \mathrm{s}$, K_{S} is Pa
where $\quad K_{C}=\frac{k_{A}}{k_{-A}}$
Unit of r_{A} is $\mathrm{mol} / \mathrm{gcat} . \mathrm{s}, C_{C . S}$ and C_{v} is $\mathrm{mol} / \mathrm{gcat}, K_{C}$ is $1 / \mathrm{Pa}, p_{C}$ in Pa, k_{A} and k_{-A} are (1/Pa.s) and (1/s), respectively
where $\quad K_{D B}=\frac{k_{D}}{k_{-D}}$
Unit of r_{S} is mol/gcat.s, $C_{B . S}$ and C_{v} is $\mathrm{mol} / \mathrm{gcat}, p_{B}$ in Pa, k_{D} and k_{-D} are $1 / \mathrm{s}$ and (1/Pa.s) respectively, $K_{D B}$ is Pa
Since desorption of B is the reverse of adsorption of $\mathrm{B}\left[K_{D B}=\frac{1}{K_{B}}\right]$

We now assume several cases where each step to be rate limiting and establish the rate law for those cases

At steady state, $r_{A}=r_{S}=r_{D}=-r_{C}$

(a) Adsorption is rate limiting

Here, the adsorption step is considered to be the slowest step while the others (reaction and desorption) are fast and reaches equilibrium. Thus, adsorption step controls the rate of the reaction

$$
r_{A}=k_{A}\left[p_{C} C_{v}-\frac{C_{C . S}}{K_{C}}\right]
$$

As neither $C_{C . S}$ nor C_{v} can be measured, they are replaced by measurable quantities in the rate law. The other non-rate limiting steps are used for this purpose

For such adsorption limited reactions, k_{A} is small and k_{S} and k_{D} (for the surface reaction and desorption steps) is large
Hence, the ratios of $\frac{r_{S}}{k_{S}}$ and $\frac{r_{D}}{k_{D}}$ are very small ($\left.\sim 0\right)$ while $\frac{r_{A}}{k_{A}}$ is large

As $\frac{r_{S}}{k_{S}} \approx 0, \quad\left[C_{C . S}-\frac{p_{P} C_{B . S}}{K_{S}}\right] \approx 0$

$$
\therefore C_{C . S}=\frac{p_{P} C_{B . S}}{K_{S}}
$$

and as $\frac{r_{D}}{k_{D}} \approx 0,\left[C_{B . S}-K_{B} p_{B} C_{v}\right] \approx 0$

$$
\therefore C_{B . S}=K_{B} p_{B} C_{v}
$$

Replacing the value of $C_{B . S}$ in the expression for $C_{C . S}$, we get

$$
C_{C . S}=\frac{K_{B} p_{B} p_{P} C_{v}}{K_{S}}
$$

Now, $\quad r_{A}=k_{A}\left[p_{C} C_{v}-\frac{C_{C . S}}{K_{C}}\right]$
Putting in the value of $C_{C . S}$ in this equation we have, $r_{A}=k_{A}\left[p_{C} C_{v}-\frac{K_{B} p_{B} p_{P} C_{v}}{K_{C} K_{S}}\right]$
or, $\quad r_{A}=k_{A} C_{v}\left[p_{C}-\frac{K_{B} p_{B} p_{P}}{K_{C} K_{S}}\right]$
This can be simplified to, $r_{A}=k_{A} C_{v}\left[p_{C}-\frac{p_{B} p_{P}}{K}\right]$
where $K=\frac{K_{C} K_{S}}{K_{B}}, \quad K=$ reaction equilibrium constant as determined from thermodynamics

$$
R T \ln K=-\Delta G^{o}
$$

For the reaction $, C \rightleftharpoons B+P, \quad K=\left(\frac{p_{B} p_{P}}{p_{C}}\right)_{e q}$
Since $C_{B . S}=K_{B} p_{B} C_{v}$ and $C_{C . S}=K_{C} p_{C} C_{v}$ at equilibrium, we can write

$$
\begin{aligned}
K=\frac{\left(\frac{c_{B . S}}{K_{B} C_{v}}\right)\left(p_{P}\right)}{\left(\frac{C_{C, S}}{K_{C} C_{v}}\right)}=\frac{\left(C_{B . S}\right)\left(p_{P}\right)}{\left(C_{C . S}\right)} \cdot \frac{K_{C}}{K_{B}}=\frac{K_{S} K_{C}}{K_{B}} \quad\left[\text { As } \frac{r_{S}}{k_{S}} \approx 0, \quad K_{S}=\frac{C_{B . S} p_{P}}{C_{C . S}}\right] \\
\therefore K=\frac{K_{S} K_{C}}{K_{B}}
\end{aligned}
$$

Carrying out a site balance gives us, $C_{t}=C_{v}+C_{B . S}+C_{C . S}$
or, $\quad C_{t}=C_{v}+K_{B} p_{B} C_{v}+\frac{K_{B} p_{B} p_{P} C_{v}}{K_{S}}$
or, $\quad C_{t}=C_{v}\left[1+K_{B} p_{B}+\frac{K_{B} p_{B} p_{P}}{K_{S}}\right]$
or, $\quad C_{v}=\frac{C_{t}}{1+K_{B} p_{B}+\frac{K_{B} p_{B} p_{P}}{K_{S}}}$
Replacing the value of C_{v} in the rate of adsorption equation we get,

$$
r_{A}=\frac{k_{A} C_{t}\left[p_{C}-\frac{p_{B} p_{P}}{K}\right]}{1+K_{B} p_{B}+\frac{K_{B} p_{B} p_{P}}{K_{S}}}
$$

Rate when adsorption is limiting is, $\quad r_{A}=\frac{k_{A} C_{t}\left[p_{C}-\frac{p_{B} p_{P}}{K}\right]}{1+K_{B} p_{B}+\frac{K_{B} p_{B} p_{P}}{K_{S}}}$
The initial rate $(t \rightarrow 0), r_{A}^{0}$ can be written as, $-r_{C 0}=r_{A}^{0}=k_{A} C_{t} p_{C 0}=k p_{C 0}$

$$
-r_{C 0}=r_{A}^{0}=k p_{C 0}
$$

If adsorption of cumene is rate limiting, then the initial rate will be linear with the partial pressure of cumene as shown below

If this is the mechanism the reaction is following, then the experimental data should be consistent with the above equation

(b) Surface reaction is rate limiting

In this case, the surface reaction is the slowest step while the others (adsorption and desorption) are fast and reaches equilibrium

$$
r_{S}=k_{S}\left[C_{C . S}-\frac{p_{P} C_{B . S}}{K_{S}}\right]
$$

As adsorption and desorption steps are fast, $\frac{r_{A}}{k_{A}} \approx 0$ and $\frac{r_{D}}{k_{D}} \approx 0$

$$
\therefore \quad C_{C . S}=K_{C} p_{C} C_{v} \quad \text { and } \quad C_{B . S}=K_{B} p_{B} C_{v}
$$

Substituting these values in the rate expression we have, $\quad r_{S}=k_{S}\left[K_{C} p_{C} C_{v}-\frac{K_{B} p_{B} p_{P} C_{v}}{K_{S}}\right]$
or, $\quad r_{S}=k_{S} K_{C} C_{v}\left[p_{C}-\frac{K_{B} p_{B} p_{P}}{K_{C} K_{S}}\right]$
or, $\quad r_{S}=k_{S} K_{C} C_{v}\left[p_{C}-\frac{p_{B} p_{P}}{K}\right]$
(as $\left.K=\frac{K_{S} K_{C}}{K_{B}}\right)$

Carrying out a site balance gives us, $C_{t}=C_{v}+C_{B . S}+C_{C . S}$
or, $\quad C_{t}=C_{v}+K_{B} p_{B} C_{v}+K_{C} p_{C} C_{v}$
or, $\quad C_{t}=C_{v}\left[1+K_{B} p_{B}+K_{C} p_{C}\right]$
or, $\quad C_{v}=\frac{C_{t}}{1+K_{B} p_{B}+K_{C} p_{C}}$
Replacing the value of C_{v} in the rate of surface reaction equation we get,

$$
r_{S}=\frac{k_{S} K_{C} C_{t}\left[p_{C}-\frac{p_{B} p_{P}}{K}\right]}{1+K_{B} p_{B}+K_{C} p_{C}}
$$

If $k_{S} K_{C} C_{t}=k$, the initial rate, r_{S}^{0} can be written as,

$$
-r_{C 0}=r_{S}^{0}=\frac{k p_{C 0}}{1+K_{C} p_{C 0}}
$$

At high $p_{C 0}, 1 \ll K_{C} p_{C 0}$ and $-r_{C 0}=r_{S}^{0}=\frac{k}{K_{C}}$
At low $p_{C 0}, 1 \gg K_{C} p_{C 0}$ and $\quad-r_{C 0}=r_{S}^{0}=k p_{C 0}$

(c) Desorption of benzene is rate limiting (controlling)

In this case, the desorption step is the slowest step while the others (adsorption and reaction) are fast and reaches equilibrium

$$
r_{D}=k_{D}\left[C_{B . S}-K_{B} p_{B} C_{v}\right]
$$

As adsorption and reaction steps are fast, $\frac{r_{A}}{k_{A}} \approx 0$ and $\frac{r_{S}}{k_{S}} \approx 0$
$\therefore \quad C_{C . S}=K_{C} p_{C} C_{v} \quad$ and $\quad C_{B . S}=\frac{K_{S} C_{C . S}}{p_{P}}=\frac{K_{S} K_{C} p_{C} C_{v}}{p_{P}}$
Substituting these values in the rate expression we have, $\quad r_{D}=k_{D}\left[\frac{K_{S} K_{C} p_{C} C_{v}}{p_{P}}-K_{B} p_{B} C_{v}\right]$
or, $\quad r_{D}=k_{D} K_{C} K_{S} C_{v}\left[\frac{p_{C}}{p_{P}}-\frac{K_{B} p_{B}}{K_{C} K_{S}}\right]$
or, $\quad r_{D}=k_{D} K_{C} K_{S} C_{v}\left[\frac{p_{C}}{p_{P}}-\frac{p_{B}}{K}\right]$
(as $\left.K=\frac{K_{S} K_{C}}{K_{B}}\right)$

Carrying out a site balance gives us, $C_{t}=C_{v}+C_{B . S}+C_{C . S}$
or, $\quad C_{t}=C_{v}+\frac{K_{S} K_{C} p_{C} C_{v}}{p_{P}}+K_{C} p_{C} C_{v}$
or, $\quad C_{t}=C_{v}\left[1+\frac{K_{S} K_{C} p_{C}}{p_{P}}+K_{C} p_{C}\right]$
or, $\quad C_{v}=\frac{C_{t}}{1+\frac{K_{S} C_{C} P_{C}}{p_{P}}+K_{C} p_{C}}$
Replacing the value of C_{v} in the rate of desorption equation we get,
$r_{D}=\frac{k_{D} K_{C} K_{S} C_{t}\left[\frac{p_{C}}{p_{P}}-\frac{p_{B}}{K}\right]}{1+\frac{K_{S} K_{C} p_{C}}{p_{P}}+K_{C} p_{C}}$ or $\quad r_{D}=\frac{k_{D} K_{C} K_{S} C_{t}\left[p_{C}-\frac{p_{P} p_{B}}{K}\right]}{p_{P}+K_{S} K_{C} p_{C}+K_{C} p_{C} p_{P}}$
If $k_{D} K_{C} K_{S} C_{t}=k$, the initial rate, r_{D}^{0} can be written as,
$-r_{C 0}=r_{D}^{0}=\frac{k p_{C 0}}{K_{S} K_{C} p_{C 0}} \quad$ or $\quad-r_{C 0}=r_{S}^{0}=k_{D} C_{t}$

Actual experimental observations for cumene to benzene conversion

- The figure shows the actual experimental data for initial rate $\left(-r_{C 0}\right)$ as a function of initial partial pressure of cumene ($p_{C 0}$)
- The plot show that the reaction is neither limited by adsorption or desorption but by the surface reaction and the rate law is given by

$$
r_{S}=\frac{k\left[p_{C}-\frac{p_{B} p_{P}}{K}\right]}{1+K_{B} p_{B}+K_{C} p_{C}}
$$

- In some cases, the reactant is diluted by an inert (I). If the inert

Pco is an adsorbing one, then it does not participate in the reaction but only covers vacant sites

$$
I+S \rightleftharpoons I . S
$$

Site balance gives, $C_{t}=C_{v}+C_{B . S}+C_{C . S}+C_{I . S}$
Since adsorption of the inert is at equilibrium, $C_{I . S}=K_{I} p_{I} C_{v}$
And the rate law now becomes, $r_{S}=\frac{k\left[p_{C}-\frac{p_{B} p_{P}}{K}\right]}{1+K_{B} p_{B}+K_{C} p_{C}+K_{I} p_{I}}$

The rate law has specific reaction rate constant, k and adsorption constants K_{C}, K_{B}, K_{I} etc

The reaction rate constant, k follow Arrhenius equation and increases exponentially with temperature

The adsorption process is exothermic and the adsorption constants, K_{i} decrease with temperature

Eley-Rideal mechanism

The reaction, $A+B(g) \rightleftharpoons C$ follows the Eley-Rideal mechanism
The steps for the reaction is given by:

$$
\begin{array}{ccc}
A+S \rightleftharpoons A . S & \text { Adsorption } \\
\text { A. } S+B \rightleftharpoons C . S & \text { Surface reaction } \\
C . S \rightleftharpoons C+S & \text { Desorption }
\end{array}
$$

If the surface reaction is considered to be the rate limiting (controlling) step

$$
r_{s}=k_{S} C_{A . S} p_{B}-k_{-S} C_{C . S}
$$

and the reaction rate law is given by, $r_{S}=k_{S}\left[C_{A . S} p_{B}-\frac{C_{C . S}}{K_{S}}\right]$
As adsorption and desorption steps are fast, $\frac{r_{A}}{k_{A}} \approx 0$ and $\frac{r_{D}}{k_{D}} \approx 0$ and they reach equilibrium
$\therefore \quad C_{A . S}=K_{A} p_{A} C_{v} \quad$ and $\quad C_{C . S}=K_{C} p_{C} C_{v}$
Substituting these values in the rate expression we have,

$$
r_{S}=k_{S}\left[K_{A} p_{A} C_{v} p_{B}-\frac{K_{C} p_{C} C_{v}}{K_{S}}\right]
$$

Now, $\quad r_{S}=k_{S}\left[K_{A} p_{A} C_{v} p_{B}-\frac{K_{C} p_{C} C_{v}}{K_{S}}\right]$
or, $\quad r_{S}=k_{S} K_{A} C_{v}\left[p_{A} p_{B}-\frac{K_{C} p_{C}}{K_{A} K_{S}}\right]$
Carrying out a site balance gives us, $C_{t}=C_{v}+C_{A . S}+C_{C . S}$
or, $\quad C_{t}=C_{v}+K_{A} p_{A} C_{v}+K_{C} p_{C} C_{v}=C_{v}\left[1+K_{A} p_{A}+K_{C} p_{C}\right]$
or, $\quad C_{v}=\frac{C_{t}}{1+K_{A} p_{A}+K_{C} p_{C}}$
Replacing the value of C_{v} in the rate of surface reaction equation we get, $\quad r_{S}=\frac{k_{S} K_{A} C_{t}\left[p_{A} p_{B}-\frac{K_{C} p_{C}}{K_{A} K_{S}}\right]}{1+K_{A} p_{A}+K_{C} p_{C}}$
or, $r_{S}=\frac{k_{S} K_{A} C_{t}\left[p_{A} p_{B}-\frac{p_{C}}{K}\right]}{1+K_{A} p_{A}+K_{C} p_{C}}$

$$
\left(\text { as } K=\frac{K_{S} K_{A}}{K_{C}}\right)
$$

If $k_{S} K_{A} C_{t}=k$, the initial rate, r_{S}^{0} can be written as,

$$
-r_{A 0}=r_{S}^{0}=\frac{k p_{A 0} p_{B 0}}{1+K_{A} p_{A 0}}
$$

At low $p_{A 0}, 1 \gg K_{A} p_{A 0}$ and $\quad-r_{A 0}=r_{S}^{0}=k p_{A 0} p_{B 0}$
At high $p_{A 0}, 1 \ll K_{A} p_{A 0}$ and $-r_{A 0}=r_{S}^{0}=\frac{k p_{B 0}}{K_{A}}$

