Internal Transport Processes – Reaction and Diffusion in Porous Catalysts

Book: Chemical Engineering Kinetics, J. M. Smith, 3rd Edition (Chapter 11), 2nd Edition (Chapter 11) Elements of Chemical Reaction Engineering, H.S. Fogler, 4th Edition (Chapter 12)

Diffusion and Reaction in catalyst pores

An expression is developed for the rate of reaction for the whole catalyst pellet, r_p in terms of temperature and concentrations at the outer surface

For this, a term known as *effectiveness factor* (η) is defined

actual reaction rate for the whole pellet		r_p
" [–] reaction rate evaluated at outer surface conditions	_	$\overline{r_s}$

$$r_p = \eta r_s = \eta r_s(C_s, T_s)$$

Unit of rate, r_p is $\left[\frac{\text{mols reacted}}{\text{mass of catalyst.time}}\right]$

For isothermal reactions, $r_p = \eta r_s(C_s)$

Evaluation of Effectiveness Factor (η)

- Let us consider an irreversible reaction, $A \rightarrow B$ of the *nth* order being catalyzed by a spherical pellet of radius R
- In order to evaluate η in terms of D_e and k, it is necessary to determine the concentration profile of reactant A in the pellet
- Mass balance over the spherical volume of thickness Δr gives,

$$\left(-4\pi r^2 D_{e,A} \frac{dC_A}{dr}\right)_r - \left(-4\pi r^2 D_{e,A} \frac{dC_A}{dr}\right)_{r+\Delta r} - (4\pi r^2 \Delta r)\rho_p r_s = 0$$

We know that, $\left.\frac{dC_A}{dr}\right|_{r+\Delta r} = \left.\frac{dC_A}{dr}\right|_r + \frac{d}{dr} \left(\frac{dC_A}{dr}\right) \Delta r$

Dividing the mass balance equation by $4\pi\Delta r$ and taking limits of $\Delta r \rightarrow 0$, we have,

$$\frac{d}{dr}\left(r^2 D_{e.A}\frac{dC_A}{dr}\right) - r^2 \rho_p r_s = 0$$

If $D_{e,A}$ is not a function of r and $r_s = kC_A^n$

$$r^{2}D_{e.A}\frac{d^{2}C_{A}}{dr^{2}} + D_{e.A}(2r)\frac{dC_{A}}{dr} - r^{2}\rho_{p}kC_{A}^{n} = 0$$
$$\frac{d^{2}C_{A}}{dr^{2}} + \frac{2}{r}\frac{dC_{A}}{dr} - \frac{\rho_{p}k}{D_{e.A}}C_{A}^{n} = 0$$

Boundary conditions for the differential equation is: At r = R, $C_A = C_{AS}$ and At r = 0, $\frac{dC_A}{dr} = 0$ or C_A is finite

The above equation can be solved to give the concentration profile

$$\frac{C_A}{C_{AS}} = \frac{R}{r} \frac{\sinh(3\phi_s r/R)}{\sinh 3\phi_s}$$

 $oldsymbol{\phi}_s$ is called the **Thiele modulus**

For a first order reaction, n = 1 and Thiele modulus becomes $\phi_s = \frac{R}{3} \sqrt{\frac{k\rho_p}{D_{e.A}}}$ ϕ_s is dimensionless RHS: $m \times \left(\frac{m^3}{kg.s} \times \frac{kg}{m^3} \times \frac{s}{m^2}\right)^{1/2}$

Significance of Thiele modulus

$$\phi_{s} = \frac{R}{3} \sqrt{\frac{k\rho_{p}C_{As}^{n-1}}{D_{e.A}}}$$

$$\phi_{s}^{2} = \frac{R^{2}}{9} \cdot k\rho_{p} \cdot \frac{C_{As}^{n-1}}{D_{e.A}} = \frac{R^{2}}{9} \cdot \frac{k\rho_{p}C_{As}^{n}}{D_{e.A}C_{As}} \cdot \frac{\frac{4}{3}\pi R^{3}}{\frac{4}{3}\pi R^{3}} = \frac{\left(\frac{4}{3}\pi R^{3}\right)\rho_{p} \times kC_{As}^{n}}{D_{e.A}(4\pi R^{2})\frac{(C_{As}-0)R_{As}}{R_{As}}}$$

$$\phi_{s}^{2} = \frac{\text{chemical reaction rate}}{\text{intraphase diffusion rate}}$$

- Small values of ϕ_s indicate a reaction that is surface reaction controlled - concentration nearly uniform throughout the pellet
- Large values of ϕ_s indicate a reaction that is fast the reactant is consumed very close to external pellet surface and very little penetrates inside

The concentration profile is now used to evaluate effectiveness factor (η)

At steady state,

Overall rate of reaction = Rate of diffusion into the pellet

$$\int_{0}^{R} \left(4\pi r^{2} \rho_{p} k C_{As}\right) dr = 4\pi R^{2} D_{e.A} \left(\frac{dC_{A}}{dr}\right)_{r=R}$$

For a first order reaction

The rate of reaction (per pellet) in the absence of pore-diffusional limitations (i.e., when the whole pellet is at the concentration of C_{As}) is given by,

$$Rate = \frac{4}{3}\pi R^3 \rho_p k C_{As}$$

Then the expression for η is,

$$\eta_{sph} = \frac{4\pi R^2 D_{e.A} \left(\frac{dC_A}{dr}\right)_{r=R}}{\frac{4}{3}\pi R^3 \rho_p k C_{As}}$$

Differentiating the concentration profile and evaluating the derivative at r = R and substituting gives,

$$\eta_{sph} = \frac{1}{\phi_s} \left[\frac{1}{tanh3\phi_s} - \frac{1}{3\phi_s} \right]$$

Using the value of
$$\eta_{sph} = \frac{1}{\phi_s} \left[\frac{1}{tanh_3\phi_s} - \frac{1}{3\phi_s} \right]$$
 to find the rate of the reaction in the pellet we get,

$$r_p = \frac{1}{\phi_s} \left[\frac{1}{tanh_3\phi_s} - \frac{1}{3\phi_s} \right] kC_{As}$$

- From the above equation for estimating η_{sph} , we can see that for small ϕ_s (ϕ_s < 0.3), $\eta_{sph} \approx 1.0$
- The intraparticle mass transfer has no effect on the rate of the pellet, the rate is controlled by the chemical reaction step
- Since, $\phi_s = \frac{R}{3} \sqrt{\frac{k\rho_p}{D_{e,A}}}$, small values of ϕ_s are obtained when the pellets are small (small R), diffusivity ($D_{e,A}$) is large or reaction is intrinsically slow (small k)
- For large ϕ_s values ($\phi_s > 5$), $\eta_{sph} = \frac{1}{\phi_s}$
- For large ϕ_s , intraparticle diffusion has a large effect on the rate. The diffusion into the pellet is relatively slow, so reaction occurs before the reactant has diffused far into the pellet
- A low η implies that only part of the catalyst interior is utilized
- Large ϕ_s values are obtained with large pellets (large R), low diffusivity ($D_{e,A}$) and large reaction rate constant (high k)

η versus ϕ_s plot for *nth order* kinetics in spherical catalyst

Zero order
$$\phi_s = \frac{R}{3} \sqrt{\frac{k\rho_p}{D_{e,A}C_{Ao}}}$$

First order $\phi_s = \frac{R}{3} \sqrt{\frac{k\rho_p}{D_{e,A}}}$
Second order $\phi_s = \frac{R}{3} \sqrt{\frac{k\rho_p C_{Ao}}{D_{e,A}}}$

For low values of ϕ_s , η is large and diffusional limitations are not important – it is a reaction rate limited condition

For high values of ϕ_s , η is small and intraparticle diffusion in the pellet is slow and important – it is a internal diffusion limited condition

For isothermal pellets, η is always < 1

- The equation derived so far for η is for a spherical pellet and for a first order irreversible reaction
- It is possible to derive expressions for first order reaction using other pellet geometries such a s flat plate and infinite cylinder
- For a flat plate, with length and breadth much greater than the thickness, it can be shown that

$$\eta_{fp} = \frac{tanh\phi_{fp}}{\phi_{fp}}$$
 where $\phi_{fp} = L \sqrt{\frac{k\rho_p}{D_{e.A}}}$ and L = half thickness of flat plate

• For an **infinite cylinder**
$$\left(\frac{L}{R} \gg 1\right)$$
, it can be shown that

$$\eta_{cyl} = \frac{1}{\phi_{cyl}} \frac{I_1(\phi_{cyl})}{I_0(\phi_{cyl})}$$

where $\phi_{cyl} = \frac{R}{2} \sqrt{\frac{k\rho_p}{D_{e.A}}}$ and R = radius of cylindrical pellet of infinite length

 I_1 , I_0 = modified Bessel functions

- The expressions for ϕ for all three different geometries show that for each case **the square root term** $(\sqrt{\frac{k\rho_p}{D_{e.A}}})$ is multiplied by the characteristic dimension of the pellet
- For flat plate, infinite cylinder and sphere, these are L, $\frac{R}{2}$ and $\frac{R}{3}$, respectively

- The η versus $\phi\,$ values for all three geometries is plotted in the same graph
- The curves for all three geometries are seen to superimpose
- For all three cases, the characteristic dimension is equal to ${}^{V_p}/{}_{S_x}$ where V_p is the volume of the pellet and S_x is the external area of the pellet
- The generalized expression for φ for nth order reaction is

$$\phi = \frac{V_p}{S_x} \sqrt{\frac{k\rho_p C_{As}^{n-1}}{D_{e.A}}}$$

This equation can be used for catalysts of irregular geometries such as extrudates, oblates, finite cylinders

For a first order reversible reaction
$$A \rightleftharpoons B$$
,

where *K* = equilibrium constant

$$\phi_{S} = \frac{R}{3} \sqrt{\frac{k\rho_{p}(K+1)}{KD_{e.A}}}$$

$$r = k_R (C_A - C_{A,eq})$$
$$k_R = \frac{k(K+1)}{K}$$

$$\eta$$

 0.5
 η
 0.5
 η
 0.1
 0.1
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5

Example

The isomerization of 1-hexane to form 2- hexane was studied in a laboratory reactor using Rh/Al₂O₃ catalyst at 150°C and 1 atm. The reaction was found to be first order in 1-hexane with a rate constant of 0.14 s⁻¹. Find the largest pellet size that can be used in an industrial reactor to achieve 70% of the maximum rate.

The pore radius of Al_2O_3 is 10 nm and D_{AB} is 0.050 cm²/s. Particle porosity can be assumed to be 0.5 and tortuosity as 4

It is necessary to find the particle size that will have $\eta = 0.70$

The geometry of the pellet has not been given in the problem. However, we can use the expression for any geometry to determine ϕ knowing η , since it has been seen that the plots of η versus ϕ for different geometries coincide

If the particle is assumed to be spherical,
$$\eta_{sph} = \frac{1}{\phi_s} \left[\frac{1}{tanh3\phi_s} - \frac{1}{3\phi_s} \right]$$

$$0.7 = \frac{1}{\phi_s} \left[\frac{1}{tanh3\phi_s} - \frac{1}{3\phi_s} \right]$$

A trial and error method was used to find the value of ϕ that will give η = 0.7 and the value was found to be 0.925

$$0.7 = \frac{1}{0.925} \left[\frac{1}{tanh(3 \times 0.925)} - \frac{1}{(3 \times 0.925)} \right] = 0.6999$$

In order to find the pellet size or *R*, we use the expression

known. The unknown $D_{e,A}$, has to be calculated before finding R

Estimation of D_{e.A}

 $D_{AB} = 0.05 \text{ cm}^2/\text{s}$

Molecular weight (*M*) of 1-hexane = 84

$$D_{K}(cm^{2}/s) = 9.7 \times 10^{3} r \sqrt{\frac{T}{M}} = 9.7 \times 10^{3} \times (10 \times 10^{-7}) \sqrt{\frac{423}{84}} = 0.02176 \ cm^{2}/s$$

Now,
$$D = \frac{1}{\frac{1}{D_{AB}} + \frac{1}{D_K}} \Rightarrow D = \frac{1}{\frac{1}{0.05} + \frac{1}{0.02176}} \Rightarrow D = 0.01516 \ cm^2/s$$

 $R = 3\phi_s \sqrt{\frac{D_{e.A}}{k}} = 3 \times 0.925 \sqrt{\frac{0.001895}{0.14}} = 0.32285 \ cm$

Using the parallel pore model, $D_e = \frac{\varepsilon_p D}{\tau} \Rightarrow D_e = \frac{0.5 \times 0.01516}{4} \Rightarrow D_e = 0.001895 \ cm^2/s$

The units of given k is s⁻¹, in order to keep the units consistent, the term inside the

square root is taken as $\sqrt{\frac{k}{D_{aA}}}$ and

not $\sqrt{\frac{k\rho_p}{D_{p,A}}}$

 $\phi_s = \frac{R}{3} \sqrt{\frac{k\rho_p}{D_{eA}}}$ where ϕ_s , $k\rho_p$ values are

Therefore, spherical particles with diameter = 0.646 cm will have η = 0.70

Significance of intrapellet diffusion

- For reactor design, it is important to know whether intrapellet diffusion resistance should be considered while evaluating the reaction rate, r_p
- The basic premise made in evaluating the criterion is that if $\phi_s \leq \frac{1}{3}$, the effectiveness factor (η) is not much less than unity ($\eta > 0.9$ for $\phi_s \leq \frac{1}{3}$)
- For first order reactions, $\phi_s = \frac{R}{3} \sqrt{\frac{k\rho_p}{D_{e.A}}} \le \frac{1}{3}$

$$\frac{R}{\sqrt{\frac{D_{e,A}}{D_{e,A}}}} \le 1$$
$$\frac{R^2 k \rho_p}{D_{e,A}} \le 1$$

Since $\eta \approx 1$, $r_p = r$

$$r_p = \eta k C_s = k C_s$$

$$W = \frac{R^2 r_p \rho_p}{C_s D_{e,A}} \le 1$$

If this criterion holds true, internal diffusion resistance can be neglected

This is called the Weisz Prater criterion

Although this criterion has been derived for a first order reaction, graphs for higher order reactions (for $\phi_s \leq \frac{1}{3}$) are nearly coincidental, and hence this form of the expression can be used for most catalytic reactions

BM-CHE-S402-Chemical Reaction Engineering - II, UIET, CSJM University, Kanpur