Hazards Identification

Hazards Identification

- Identify the hazards and reduce the risk well in advance of an accident.
- Each process the following questions must be asked:
 - 1. What are the hazards?
 - 2. What can go wrong and how?
 - 3. What are the chances?

- 4. What are the consequences?
- The first question represents hazard identification. The last three questions are associated with risk assessment
- combined category called hazard evaluation
- Risk assessment procedure that determines probabilities is frequently called probabilistic risk assessment (PRA)
- Whereas a procedure that determines probability and consequences is called quantitative risk analysis (QRA).

Hazards identification and risk assessment procedure

Hazard identification and risk assessment

- hazard identification methods described as:
 - Process hazards checklists: list of items and possible problems in the process must be checked
 - Hazards surveys: This can be as simple as an inventory of hazardous materials, can be as detailed as the Dow indexes.

(The Dow indexes are a formal rating system, much like an income tax form, that provides penalties for hazards and credits for safety equipment and procedureS)

• Hazards and operability (HAZOP) studies:

Various events are suggested for a specific piece of equipment with the participants determining whether and how the event could occur and whether the event creates any form of risk.

Hazard identification and risk assessment

Safety review: Formal type of HAZOP study.

The results are highly dependent on the experience and synergism of the group reviewing the process

Process Hazards Checklists

This checklist might contain the following items:

- Check oil in engine
- Check air pressure in tires
- Check fluid level in radiator
- Check air filter

- Check fluid level in windshield washer tank
- Check headlights and taillights
- Check exhaust system for leaks
- Check fluid levels in brake system
- Check gasoline level in tank

Typical process safety checklist

Further study required 1 Does not apply 4 Completed 4

General Layout	1000	-	
1. Areas properly drained?		•	•
2. Aisleways provided?			
Fire walls, dikes and special guardrails			
needed?			
 Hazardous underground obstructions? 			
Hazardous overhead restrictions?		0	
Energency accesses and exits?		•	
7. Enough headroom?			0
Access for emergency vehicles?			
9. Safe storage space for raw materials and			
finished products?		0	0
10.Adequate platforms for safe maintenance			
operations?			
11. Hoists and elevators properly designed			
and safeguarded?		•	
12.Clearance for overhead power lines?			0
Buildings			
1. Adequate ladders, stairways and		100	
escapeways?			0
Fire doors required?			
Head obstructions marked?		0	0
4. Ventilation adequate?			
Need for ladder or stairway to roof?		D	0
Safety glass specified where necessary?			
7. Need for fireproofed structural steel?			
Process			
1. Consequences of exposure to adjacent			
operations considered?			
2. Special forme or dust boods required?	-		
3 finstable materials properly stored?	-		
A Brocoss laboratory checked for runauau	-		
4. Process laboracory checked for runaway	100	-	
explosive conditions?			•
5. Provisions for protection from explosions	t 🗖		0
6. Hazardous reactions possible due to	1000	1.00	10.00
mistakes or contamination?		0	0
7. Chemistry of processes completely	0.552		628
understood and reviewed/			
e. Provisions for rapid disposal of reactant	8		
in an emergency?			
9. Failure of mechanical equipment possible			
cause of hazards?		D	D

- First column: indicate those areas that have been thoroughly investigated.
- Second column: is used for those items that do not apply to the particular process.
- Last column : mark those areas requiring further investigation.

Typical process safety checklist

- Checklists should be applied only during the preliminary stages of hazard identification
- Checklists are most effective in identifying hazards arising from process design, plant layout, storage of chemicals, electrical systems, and so forth.

Hazards Surveys:

- As simple as an inventory of hazardous materials in a facility or
- As complicated as a rigorous procedure such as the Dow Fire and Explosion Index (F&EI)
- and the Dow-Chemical Exposure Index (CEI), which are two popular forms of hazards survey

Hazards Surveys

- The Dow F&EI is designed for rating the relative hazards with the storage, handling, and processing of explosive and flammable materials.
- mostly independent of judgmental factors
- The form shown in Figure consists of three columns of numbers.
 - The first column is the penalty column. Penalties for various unsafe situations are placed in this column.
 - second column contains the penalty actually used. This allows for a reduction or increase in the penalty based on extenuating circumstances not completely covered by the form.
 - In the event of uncertainty here, the complete penalty value from the first column is used
 - The final column is used for computation.

Form used in the Dow Fire and Explosion Index

FIRE & EXPLOSION INDEX

AREA /C	OUNTRY	DIVISION		LOCATION DATE		
SITE		MANUFACT	UNING UNIT	PROCESS UNIT		
PREPARED BY: APPR		APPROVED BY: (Superio	UPPROVED BY: (Superintendent) BUILDING		3	
REVIEWED BY: (Management) REVIEWED BY: (Technology Center) REVIEW			VIEWED BY: (Saluty & Loa	ED BY: (Safety & Loas Prevention)		
MATERI	ALS IN PROCESS UNIT					
STATE OF OPERATION BASIC MATERIAL(S) FOR MATERIAL FAC					ERIAL FACTOR	
MATER	AL FACTOR (See Table	a 1 or Appendices	A or B) Note requirement	s when unit temperature over 14	0 °F (60 °C)	
1. G	eneral Process Ha	zards			Penalty Fac- tor Range	Penalty Fac- tor Used(1)
Base Factor				1.00	1.00	
A. Exothermic Chemical Reactions				0.30 to 1.25		
B. Endothermic Processes				0.20 to 0.40		
C. Material Handling and Transfer				0.25 to 1.05		
D. Enclosed or Indoor Process Units				0.25 to 0.90		
E. Access			0.20 to 0.35			
F.	Drainage and Spill	Control		galoro	u.m. 0.25 to 0.50	
G	eneral Process Ha	zards Factor	(F1)			
2. Sp	ecial Process Haz	tards				

LOSS CONTROL CREDIT FACTORS

1. Process Control Credit Factor (C1)

Feature	Credit Factor Range	Credit Factor Used(2)	Feature	Credit Factor Range	Credit Factor Used(2)
a. Emergency Power	0.98		f. Inert Gas	0.94 to 0.96	
b. Cooling	0.97 to 0.99		g. Operating Instructions/Procedures	0.91 to 0.99	
c. Explosion Control	0.84 to 0.98		h. Reactive Chemical Review	0.91 to 0.98	
d. Emergency Shutdown	0.96 to 0.99		i. Other Process Hazard Analysis	0.91 to 0.98	
e. Computer Control	0.93 to 0.99				

		Fire & Explosion Index (F&EI) (See Front)		
	ft or m	Radius of Exposure(Figure 7)	1	
	ft ² or m ²	Area of Exposure	2	
\$MM	4. Value of Area of Exposure			
		Damage Factor		
\$MM	[4 x 5]	Base Maximum Probable Property Damage - (Base MPPD)	ę.	
		Loss Control Credit Factor(See Above)		
\$MM)) [6 x 7]	Actual Maximum Probable Property Damage - (Actual MPP)		
	days	Maximum Probable Days Outage - (MPDO)(Figure 9)		
\$MM		Business Interruption - (BI)	0.	

Hazards Surveys

- The first step in the procedure is to conceptually divide the process into separate process units. A process unit is a single pump, a react
- The next step is to determine the material factor (MF) for use or, or a storage tank.
- Higher the value of the MF, the more flammable
- The general process hazard factor (F1) and special process hazard factor (F2)
- Multiplied together to produce a unit hazard factor (F3)
- The Dow F&EI is computed by multiplying the unit hazard factor by the MF

Hazards Surveys

The next step is to determine the general process hazards. Penalties are applied for the following factors:

- Exothermic reactions that might self-heat
- Endothermic reactions that could react because of an external heat source such as a fire
- Material handling and transfer, including pumping and connection of transfer lines
- Enclosed process units preventing dispersion of escaped vapors
- Limited access for emergency equipment
- Poor drainage of flammable materials away from the process unit

Compound	Material factor	Dow Fire and Explosion Index	Degree of hazard	
Acetone	16 20	1-60	Light	
Acetylene	29	61–96	Moderate	
Benzene	16	97–127	Intermediate	
Bromine	1	128-158	Heavy	
1,3-Butadiene	24	159 and above	Severe	

Penalties for special process hazards

- 1. Toxic materials, which could impede fire fighting
- **2.** Less than atmospheric pressure operation with a risk of outside air entering
- 3. Operation in or near the flammable limits
- 4. Dust explosion risks
- 5. Higher than atmospheric pressure
- 6. Low-temperature operation with potential embrittlement/ ductility of carbon steel vessels
- 7. Quantity of flammable material

- 8. Corrosion and erosion of process unit structures
- 9. Leakage around joints and packings
- **10.** Use of fired heaters, providing a ready ignition source
- **11.** Hot oil heat exchange systems where the hot oil is above its ignition temperature
- **12.** Large rotating equipment, including pumps and compressors

Thanks