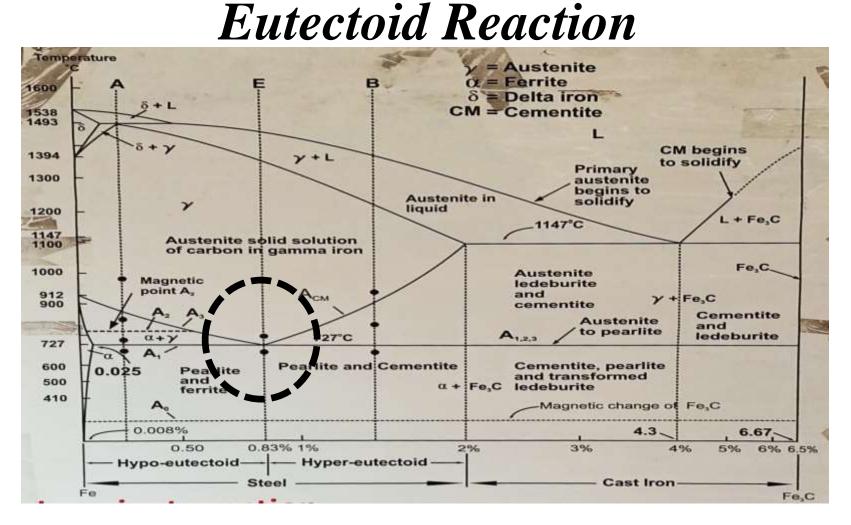
Heat Treatment of Metals

MSE-S305

Ankur Katiyar


Assistant Professor, MSME Department UIET, CSJM University

Eutectoid Reaction

During cooling of austenite (γ -ferrite) having 0.8%C at constant eutectoid temperature(727°C) undergoes eutectoid transformation to form a mixture of alternate lamellae of ferrite (0.02%C) and cementite (Fe₃C).

Austenite (
$$\gamma$$
) Cool Ferrite (α) + Cementite 0.8%C + 0.02%C + 6.67 %C

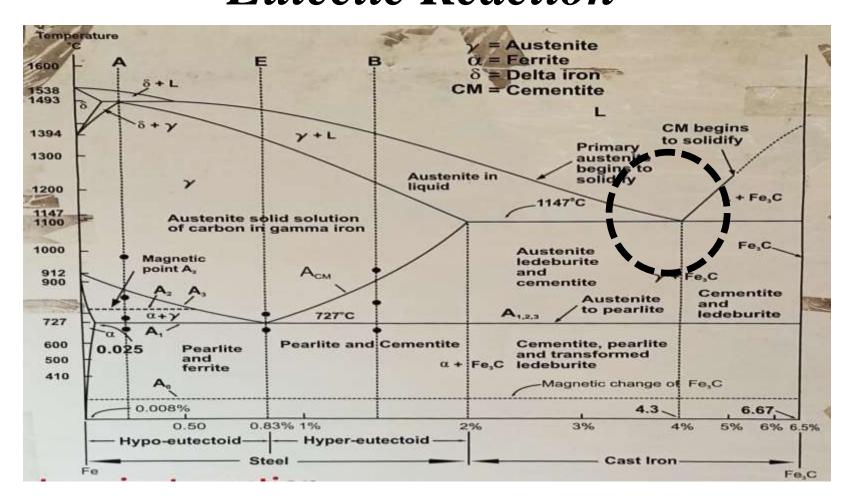
The Phase changes that occur upon passing from the γ region into the $\alpha + Fe_3C$ phase field.

A portion of the Fe-C diagram – (from pure Fe to 6.67 wt.% C.)

Eutectoid Reaction

Consider an alloy of eutectoid composition (0.8%C), as it is cooled from a temperature within the γ phase region (around $800^{\circ}C$), Initially the alloy is composed entirely of the austenite (γ -ferrite) phase having composition 0.8 wt.%C and then transformed to Pearlite ($\alpha + Fe_3C$).

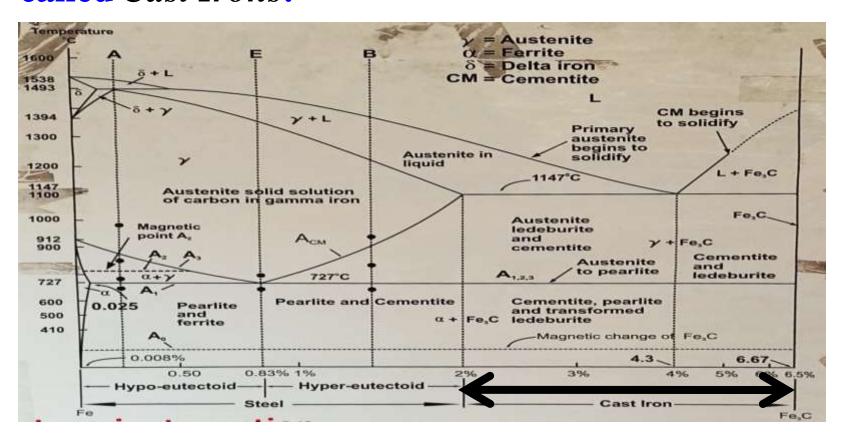
Thus Ferrite, wt% is
$$\alpha = \frac{6.67 - 0.8}{6.67 - 0.02} \times 100 = 88\%$$


Thus cementite, wt % is
$$Fe_3C = \frac{0.8 - 0.02}{6.67 - 0.02} \times 100 = 12\%$$

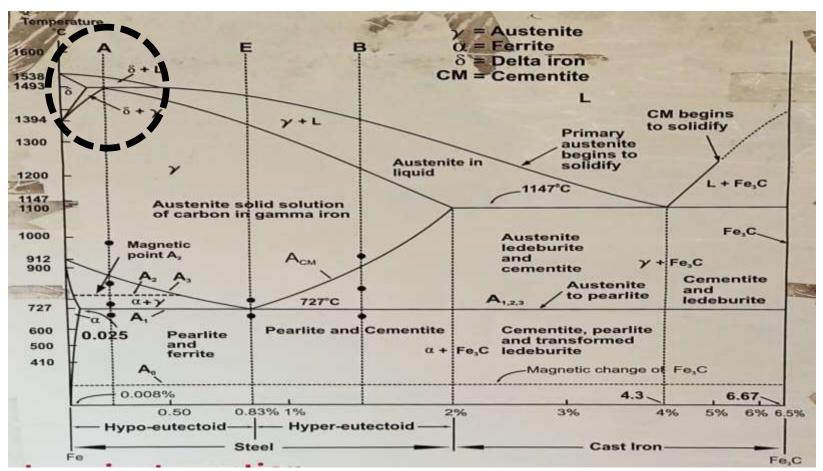
Eutectic Reaction

Eutectic reaction undergoes at eutectic temperature (1147°C) to give mixture of two different solids, namely austenite (γ -ferrite) and cementite (Fe_3C), solidifying simultaneously. The eutectic mixture called Ledeburite (γ + Fe3C).

➤ The invariant *Eutectic reaction* in Fe-Fe₃C diagram is given by –


Invariant reactions present in Fe-Fe₃C Phase Diagram Eutectic Reaction

A portion of the Fe-C diagram – (from pure Fe to 6.67 wt.% C.)


Invariant reactions present in Fe-Fe₃C Phase Diagram Eutectic Reaction

Ferrous alloys contain more than 2.1 wt% C are called Cast Irons.

- The Fe-C alloys having carbon between 2.11%C and 4.3%C are called hypo eutectic cast irons.
- Alloys having carbon between 4.3%C and 6.67%C are called hypereutectic cast irons.
- >Alloys of Fe with 4.3%C carbon is called eutectic cast iron.

Peritectic Reaction

A portion of the Fe-C diagram – (from pure Fe to 6.67 wt.% C.)

Peritectic Reaction

Consider an alloy of peritectic composition (0.16%C), Calculate weight fractions of liquid phase and δ -ferrite phase.

Thus Liquid, wt% is
$$L = \frac{0.16 - 0.1}{0.51 - 0.1} \times 100 = 14.63\%$$

Thus
$$\delta$$
 ferrite, wt % is δ (ferrite) = $\frac{0.51 - 0.16}{0.51 - 0.1} \times 100 = 85.37\%$