Classification of Signals

Department of Electronics \& Communication Engg. University Institute of Engineering \& Technology, C S J M University , Kanpur

Classification of Signals

- Continuous-time and discrete-time signals
- Even and Odd Signals
- Periodic and aperiodic signals
- Power and energy signals
- Deterministic and random signals
- Causal and non-causal.

Continuous Time Signal

Signal that has a value for all points in time Function of time

Written as $x(t)$ because the signal x is a function of time Commonly found in the physical world ex. speech Signal
Displayed graphically as a line

Discrete Time Signals

Signal that has a value for only specific points in time Typically formed by "sampling" a continuous-time signal

Taking the value of the original waveform at specific intervals in time Function of the sample value, n

Write as $\mathrm{x}[\mathrm{n}]$
Often called a sequence
Commonly found in the digital world
ex. mp3
Displayed graphically as individual values
Called a "stem" plot

Example of CT \& DT Signal

Even And Odd Signals
Even function Odd function

$$
\mathrm{g}(\mathrm{t})=\mathrm{g}(-\mathrm{t}) \quad \mathrm{g}(\mathrm{t})=-\mathrm{g}(-\mathrm{t})
$$

Even \& Odd parts are Calculated as

The even part of a function is $g_{e}(t)=\frac{g(t)+g(-t)}{2}$
The odd part of a function is $g_{0}(t)=\frac{g(t)-g(-t)}{2}$

Discrete Time Even and Odd Signals

$$
\mathrm{g}[n]=\mathrm{g}[-n] \quad \mathrm{g}[n]=-\mathrm{g}[-n]
$$

Even Function

$$
\mathrm{g}_{e}[n]=\frac{\mathrm{g}[n]+\mathrm{g}[-n]}{2}
$$

Odd Function

$g_{0}[n]=\frac{\mathrm{g}[n]-\mathrm{g}[-n]}{2}$

Derivatives and Integrals of Functions

Function type	Derivative	Integral
Even	Odd	Odd + constant
Odd	Even	Even

Periodic Non-Periodic Signal

Given $x(t)$ is a continuous time signal $\mathrm{x}(\mathrm{t})$ is periodic if $\mathrm{x}(\mathrm{t})=\mathrm{x}\left(\mathrm{t}+\mathrm{T}_{0}\right)$ for any T and any integer n Example

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=\mathrm{A} \cos (\omega \mathrm{t}) \\
& \mathrm{x}\left(\mathrm{t}+\mathrm{T}_{\mathrm{o}}\right)=\mathrm{A} \cos \left[\omega\left(\mathrm{t}+\mathrm{T}_{\mathrm{o}}\right)\right]=\mathrm{A} \cos \left(\omega \mathrm{t}+\omega \mathrm{T}_{\mathrm{o}}\right)=\mathrm{A} \cos (\omega \mathrm{t}+2 \pi) \\
& =\mathrm{A} \cos (\omega \mathrm{t}) \\
& \text { Note: } \mathrm{T}_{\mathrm{o}}=1 / \mathrm{f}_{0} ; \omega=2 \pi \mathrm{f}_{0}
\end{aligned}
$$

Non-Periodic Signal

For non-periodic signals

$$
x(\mathrm{t}) \neq \mathrm{x}\left(\mathrm{t}+\mathrm{T}_{\mathrm{o}}\right)
$$

A non-periodic signal is assumed to have a period $\mathrm{T}=\operatorname{lnfinite}$
Example of non periodic signal is an exponential signal

Condition of periodicity for Discrete Time Signal

A discrete time signal is periodic if

$$
\mathrm{x}(\mathrm{n})=\mathrm{x}(\mathrm{n}+\mathrm{N})
$$

For satisfying the above condition the frequency of the discrete time signal should be ratio of two integers

$$
\mathrm{f}_{\mathrm{o}}=\mathrm{k} / \mathrm{N}
$$

Sum of Two periodic Siognals

$\mathrm{X}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})+\mathrm{X} 2(\mathrm{t})$
$\mathrm{X}(\mathrm{t}+\mathrm{T})=\mathrm{x} 1\left(\mathrm{t}+\mathrm{m}_{1} \mathrm{~T}_{1}\right)+\mathrm{X} 2\left(\mathrm{t}+\mathrm{m}_{2} \mathrm{~T}_{2}\right)$
$\mathrm{m}_{1} \mathrm{~T}_{1}=\mathrm{m}_{2} \mathrm{~T}_{2}=\mathrm{T}_{\mathrm{o}}=$ Fundamental period
Example: $\cos (\mathrm{t} \pi / 3)+\sin (\mathrm{t} \pi / 4)$
$-\mathrm{T} 1=(2 \pi) /(\pi / 3)=6 ; \mathrm{T} 2=(2 \pi) /(\pi / 4)=8$
$-\mathrm{T} 1 / \mathrm{T} 2=6 / 8=3 / 4=($ rational number $)=\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}$
$-\mathrm{m}_{1} \mathrm{~T}_{1}=\mathrm{m}_{2} \mathrm{~T}_{2} \rightarrow$ Find ml and $\mathrm{m} 2 \rightarrow$
$-6.4=3.8=24=\mathrm{T}_{\text {。 }}$

Energy and Power Signals

Energy Signal

- A signal with finite energy and zero power is called Energy Signal i.e.for energy signal

$$
0<\mathrm{E}<\infty \text { and } \mathrm{P}=0
$$

- Signal energy of a signal is defined as the area under the square of the magnitude of the signal.

$$
E_{\mathrm{x}}=\int_{-\infty}^{\infty}|\mathrm{x}(t)|^{2} d t
$$

- The units of signal energy depends on the unit of the signal.

Energy and Power Signals

- A signal is referred to as an energy signal, if and only if the total energy of the signal satisfies the condition
$0<\mathrm{E}<\infty$
-On the other hand, it is referred to as a power signal, if and only if the average power of the signal satisfies the condition
$0<\mathbf{P}<\infty$
-An energy signal has zero average power, whereas a power signal has infinite energy.
-Periodic signals and random signals are usually viewed as power signals, whereas signals that are both deterministic and non-periodic are energy signals.

Power Signal	Energy Signal		
- Infinite Duration	• Finite Duration		
- Normalized Power is finite			
and non-zero.			- Normalized energy is finite
:---			
and non-zero.			

Deterministic Signal

- Any signal can be predictable or described in advance or by mathematical expression
- e.g. Sinusoidal signal

Random Signal

- Signals that cannot be described by is known as Random signal
- e.g- seismic signal , speech signal

Causal vs. Non-causal

- A causal signal is zero for $t<0$ and an non-causal signal is zero for $t>0$

- Right- and left-sided signals

A right-sided signal is zero for $t<T$ and a left-sided signal is zero for $t>T$ where T can be positive or negative.

Thank You!

