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Compensators

Early in the course we provided some useful guidelines
regarding the relationships between the pole positions
of a system and certain aspects of its performance

Using root locus techniques, we have seen how the
pole positions of a closed loop can be adjusted by
varying a parameter

13 -

What happens if we are unable to obtain that
performance that we want by doing this?
® Ask ourselves whether this is really the performance
that we want
® Ask whether we can change the system,
say by buying different components
® seek to compensate for the undesirable aspects of the
process




Cascade compensation

Compensator Process
R(s) ; G(s) = G(s) R
I Hi(s) [«

Usually, the plant is a physical process

If commands and measurements are made electrically,
compensator is often an electric circuit

General form of the (linear) compensators we will consider is

KT (s+2)
G = T s+ )

Therefore, the cascade compensator adds open loop poles and
open loop zeros

These will change the shape of the root locus



Compensator design

Compensator

Process

G(s)

R Ao?—o G(s) —>
I <

-

H(s)

Where should we put new poles and zeros to achieve desired

performance?

That is the art of compensator design

We will consider first order compensators of the form

 K(s+2)  K(1+s/2)

Ge(8) =

(s+p)  (1+s/p)’

where K; = K.z/p

* with the pole —p in the left half plane
® and the zero, —z in the left half plane, too

For reasons that will soon become clear

® when |z| < |p|: phase lead network
* when |z| > |p|: phase lag network



Lead compensation

Ke(s+ 2)
Ge(s) = ———
)= s 1 p)
with |z| < |p|. That is, zero closer to origin than pole

|

Letp =1/ and z = 1/(cead7p). Since z < p, ayeaq > 1.
Define K; = K.z/p = Kc/aeag. Then
Ge(8) = =

=)~ ()




Lead compen%a:rion
. Kc c AleadT]
With |z| < |pl, ctead > 1, Ge(S) = (s(-sr;)Z) = ((1++|Tpsd)p3)

* Frequency response:

Ge(jw) =

Kc(1 +jwalead7'p)
(1 +jw7'p)

Bode diagram (in the figure, K; = Kj)
o " 20 dB/dec

K} dB)

|
\
|
|
Between w = z and w = p, | Gs(jw)| =~ KeweadTp

What kind of operator has a frequency response with

magnitude proportional to w? Differentiator
Note that the phase is positive. Hence “phase lead”



A passive phase lead network

C
\|
/1
+ o———AA// o 0+
R,
V,(s) R, Vs(s)

Homework: Show that 5?8 has the phase lead
characteristic



Active lead and lag networks

Here’s an example of an active network architecture.

_ RRARCis + 1) _‘%
Lead or lag G, RR\(RCas + 1)

(j\
Lead if R(Cy = R:Cs o l ANN— Ky
Lagit R\C, < R:C, +o—e—AAA . % Ry
fy _ I> . AAA >
i



Principles of Lead design via
Root Locus

The compensator adds poles and zeros to the P(s) in
the root locus procedure.

Hence we can change the shape of the root locus.

If we can capture desirable performance in terms of
positions of closed loop poles
then compensator design problem reduces to:

® changing the shape of the root locus so that these
desired closed-loop pole positions appear on the root
locus

¢ finding the gain that places the closed-loop pole
positions at their desired positions

What tools do we have to do this?
Phase criterion and magnitude criterion, respectively



Root Locus Principles
The point s is on the root locus of P(s) if 1 + KP(sp) =
[T (s+p))

and G(s) = Kfs(i))z) we have P(s) = Ei;g %/” 15::;?) and

K = K.Kg. We will restrict attention to the case of K > 0

In first order compensator design with G(s) =

Phase cond. s; is on root locus if ZP(sy) = 180° 4 ¢360°:

M n

> (angle from —z; to so) — Y _(angle from —p; to so)

i=1 j=1
+ (angle from —z to sp) — (angle from —p to sp)
= 180° + ¢ 360°
Mag. cond. If sy satisfies phase condition, the gain that puts
a closed-loop pole at sp is K = 1/|P(s)]:
~ TI.(dist from —p; to o)  (dist from —p to )
1Y, (dist from —z to sp)  (dist from —z to so)




RL design: Basic procedure

@ Translate design specifications into desired positions of
dominant poles

® Sketch root locus of uncompensated system to see if desired
positions can be achieved

® If not, choose the positions of the pole and zero of the
compensator so that the desired positions lie on the root
locus (phase criterion), if that is possible

@ Evaluate the gain required to put the poles there
(magnitude criterion)

@ Evaluate the total system gain so that the steady-state error
constants can be determined

@ If the steady state error constants are not satisfactory, repeat

This procedure enables relatively straightforward design of
systems with specifications in terms of rise time, settling time, and
overshoot; i.e., the transient response.

For systems with steady-state error specifications, Bode (and
Nyquist) methods may be more straightforward (later)



Lead Comp. example

Consider a case with G(s) = 5577 and H(s) =

s(s+
Design a lead compensator to achieve:

e damping coefficient ¢ ~ 0.45 and
¢ velocity error constant K, = limg_,o sG.(s)G(s) > 20

¢ swift transient response (small settling time)

What to do?
¢ Can we achieve this with proportional control?

¢ |f not we will attempt lead control



Attempt prop. control

¢ Closed loop poles that correspond to ¢ = 0.45 lie on
rays of angle cos~1(0.45) ~ 60° to neg. real axis

e Sketch them



Attempt prop. control, Il

* Add sketch of root locus of ¢l

Aeal partof

e |s there an intersection? Yes

* What is the value of K = KampKg that puts closed-loop
poles at intersection point?



Attempt prop. control, Il

[ distances from OL poles
[ I distances from OL zeros

e Thatgainis K =

s
2 IJ.I
d? dl
. -
L
g
e 1 =
Aeal partof
o K= d1 dg =5.



Assessing our prop. design
® Kamp = 5.
® Place actual closed loop poles on the root locus (asterisks)

Aeal partof

® As expected, they are at the target locations (open squares)

What is the corresponding K, ?
* Ky =lims_08Go(s)G(s) = f&m = 2.5 ;(

® Do the closed-loop poles have responses that decay quickly?
No, Ts ~ 4s



Ampinude

Prop. control, step response

Step Mespones

Tima {ssc|



Lead compensated design

Where should the closed-loop poles be? cos~'(0.45) ~ 60°

Note that the settling time is not specified; it only needs to be
small. This provides design flexibility.

However, we need a large K, which will require large gain.
Need desired positions far from open loop poles.

Let’s start with desired roots at —4 + j8 (purple squares)
This pair has Ts = 1s and w, = V42 + 82 ~ 8.9

3
5
;



How to choose z, p and K;

\\
g
N

o X
O
*
®

maga

el prart of &

® | ead design questions:
* How do we choose z and p to ensure that there exists a
gain that will put closed loop poles at the squares?
® Once we have done that, how do we find the gain that
puts the closed-loop poles at the squares?



How to choose z, p and K;

3
g
.

We want squares to be on the root locus

That is, if sp denotes the position of one of the squares,
we want 1 + Gg(S9)G(so) =1+ KP(sp) =0

In other words, we want P(sp) = —1/K

Separating that complex-valued equation into magnitude and
phase components, we want

* /P(sp) = 180°; phase criterion

® |P(sp)| = 1/K; magnitude criterion



How to choose z, p and K;

Aeal partof s

¢ To find z and p we use the phase criterion
> " (angles from OL zeros) — > _ (angles from OL poles) = 180°
= 0, — 0y — 02 — 0, = 180°
® Then, to find K; we use the magnitude criterion

[ I distances from OL poles  dydbdp
[Idistances from OL zeros =~ d,

K =KcKg =



How to choose z and p

Can we start to think of this geometrically, rather than algebraically?
Phase condition equation at sp: 6, — 6, = 180° + 0y + 6>

One linear equation, two unknowns. Many solutions

However, we can find out something about ZG¢(so)

Since G¢(s) = KC%, with K; > 0,

ZLGe(So) = ZL(So+2)— Z(So+p) =6, —0p

Can you see this angle in the figure? It is ¢¢

Since 90° < 6y, 6> < 180, = 0 < ¢ < 180

That is, we need a phase lead compensator

What does that say about z and p? —p < —Zz



Simplifying rule of thumb
What are good choices for z and p amongst those that provide the
right amount of phase lead?

Simplifying rule of thumb: When amount of phase lead required at
sp is less than 90°, place zero on the real axis “underneath” the
desired closed-loop pole positions.

When applicable, this reduces the complexity of the design
procedure; now we only have to design the pole position; often a
reasonable choice

Can iterate on zero position as needed

.
B



How to choose p

s
.
&
d 8 d; “.d,
5
L} (] »
Z 0 x B x?
£ P -4 .’
’
A #
p
e
.
"

Aeal partof s

With rule of thumb in place
® Find 6, using
Z angles from OL zeros — Z angles from OL poles = 180°
~90— (116 +104 + 6,) = 180
= 6, ~ 50
® Hence, pole at —p = —4 — 8/tan(6p) ~ —10.86



Checking our work

Does the root locus for the compensated system go through
the desired positions?

¥naginary part of 5

8 4
Aeal partof



How to choose K.

ur’

e What is the gain that puts closed-loop poles in the
boxes? Recall

K — KKn— [ distances from OL poles  dyd-dp
— "¢"G T TTdistances from OL zeros  dj

* In this example Kg = 1

5)(10.54
211054 ~ 97 1

e Therefore, K; = dogidp ~ 8.94(82



Summarizing initial design

* Our compensator is Ge(S) = {-1oss)

* The compensated open 100p is Go(S)G(S) = g5i5( o185

® Mark all closed-loop poles on the root locus (asterisks)
Note that conjugate pair hit the target (as designed),
and that the real pole is not far from the (open/closed loop) zero

wmaginary per of 5

- L
Pl part of &

® Velocity constant: K, = lims_,0 SG¢(8)G(S) =~ 17.9 (



What to do now?

We tried hard, but did not achieve the design specs
Let’s go back and re-examine our choices
Zero position of compensator was chosen via rule of thumb

Can we do better?
Yes, but two parameter design becomes trickier.

What were other choices that we made?
We chose desired poles to be of magnitude w, ~ 8.9

We could choose them to be further away;
larger gain to get there (and faster transient response)

By how much?

Show that when desired poles have w, = 10 as well as the
required ¢ ~ 0.45, then the choice of z ~ 4.47, p~ 12.5 and
Kc =~ 125 results in K, ~ 22.3



Imaginary part of s

Root Locus, new lead comp.

-12 =10 -8 B
Real partof s



Comparisons to prop. design

Closed-loop pole and zero positions
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Comparisons

Prop.-contr. Lead contr.
Controller, Gg(s) 5 LRk
125(s+4.47) 1
OL TF, G¢(s)G(s) s(ss+2) (s(f12.5) ) s(512)
Y 5 125(5+4.47)
CLTF, % s(s+2)+5 s(s+2)(s+12.5)1125(s+4.47)
CL poles —14)2 —4.47 + j8.94, —5.59
CL zeros 00, 00 —4.47, 00, 00
. 5 131(1+0.013s) 1.71
CL TF, again 272515 2189451100 51559

e Complex conjugate poles still dominate

¢ Closed-loop zero at -4.47 (which is also an open-loop
zero) reduces impact of closed-loop pole at -5.59;
residue of that pole in partial fraction expansion is small



New lead comp., ramp response

Lineur Simulaton Aewdts

Ampinude




Ampinude

New lead comp., ramp
response, detalil

Lineur Simulaton Aewdts




New lead comp., step response

Note faster settling time than prop. controlled loop,
However, the CL zero has increased the overshoot a little

Perhaps we should go back and re-design for ¢ ~ 0.40
in order to better control the overshoot



Outcomes

* Root locus approach to phase lead design was
reasonably successful in terms of putting dominant
poles in desired positions; e.g., in terms of ( and wy,

e We did this by positioning the pole and zero of the lead
compensator so as to change the shape of the root
locus

* However, root locus approach does not provide
independent control over steady-state error constants
(details upcoming)

¢ That said, since lead compensators reduce the DC gain
(they resemble differentiators), they are not normally
used to control steady-state error.

® The goal of our lag compensator design will be to
increase the steady-state error constants, without
moving the other poles too far



Cascade compensation

Compensator Process
R(s 4?—4 G(s) > Gl(s) > )5
II H(s) |

Throughout this lecture, and all the discussion on cascade
compensation, we will consider the case in which H(s) = 1.

We will consider first order compensators of the form

_ Ko(s+2)
AN CETN

with the pole, —p, and the zero, —z, both in the left half plane

when |z| < |p|: phase lead network

when |z| > |p|: phase lag network



Steady-state errors

e
ext 3(s)

If closed loop stable, steady state error for input R(s):
. R(s)
s—0 1+ Ge(s)G(s)

Let G(s) = % and consider G¢(s) = K(cs(i+p)2)

¢ Consider the case in which G(s) is a type-0 system.
e Steady state error due to a step r(t) = Au(t):
€ss = %, where
_ Kez Kgll;zi
P I1;p
* Note that for a lead compensator, z/p < 1,

® So lead compensation may degrade steady-state error
performance

A " J - YAIJL. 1 L L D S T L. o B R o 1

Kposn = Gc(0)G(0)



Steady-state error

Now, consider the case in which G(s) is a type-1
KeIl(s+2i
system, G(s) = %

Steady-state error due to a ramp r(t) = At: ess = A/Ky,
where the velocity constant is

_ Kez Kgllizi
pILip

Ky = lim sG¢(8)G(s)
s—0

Once again, lead compensation may degrade
steady-state error performance

Is there a way to increase the value of these error
constants while leaving the closed loop poles in
essentially the same place as they were in an
uncompensated system? Perhaps |z| > |p|?



Lag

Comps

compensation

Ke(s+ 2)
Ge(S) = —F——=—
)= (s 5 p)
with |z| > |p|. That is, pole closer to origin than zero

jo

‘ » o

Let z=1/7z and p = 1/(cag7z). Since z > p, ajag > 1.
Define Ko = Koz/p = Koauag. Then

_ Kc(S+Z) . Rc(1 +Tzs)

(s+p) (1+ alagTzS)

Ge(9)



Frequency response

, Kc(1 —|—ij2)

Ge(jw) = UTOélagTz)

Magnitude
e Low frequency gain: K¢
* Corner freq. in denominator at wp = p = 1/(ag7z)
e Corner freq. in numerator atw, =z =1/,

.OJp<CUZ

High frequency gain: K¢ /amg = Kc

Phase

¢(w) = atan(wTz) — atan(ajagwrz)

At low frequency: ¢(w) =0

At high frequency: ¢(w) =0

In between: negative, with max. lag atw = /zp



Bode Diagram, with K, = 1

log @

20 loglG,| (dB)

=20 log ay

=20 log a;

-45°

Hw)

—%°

Note integrative characteristic



A passive phase lag network




Active lead and lag networks

Here’s an example of an active network architecture.

_ RRARCis + 1) _‘%
Lead or lag G, RR\(RCas + 1)

(j\
Lead if R(Cy = R:Cs o l ANN— Ky
Lagit R\C, < R:C, +o—e—AAA . % Ry
fy _ I> . AAA >
i



Lag compensator design

e Lag compensator: G¢(s) = K; %. with |z| > |p|.

¢ Recall position error constant for compensated type-0

system and velocity error constant for compensated type-1
system:

Kcz Kc,‘H,-Z,‘ K, — Kcz KGH,‘ZI'
) v —
p IIp pILp

Kposn =

where in the latter case the product in the denominator is
over the non-zero poles.
Design Principles
* We don't try to reshape the uncompensated root locus.

* We just try to increase the value of the desired error constant
by a factor g = z/p without moving the existing
closed-loop poles (well not much)

¢ Reshaping was the goal of lead compensator design



Lag compensator design

Design principles:
e Don’t reshape the root locus

* Adding the open loop pole and zero from the
compensator should only result in a small change to the
angle criterion for any (important) point on the
uncompensated root locus

* Angles from compensator pole and zero to any
(important) point on the locus must be similar

® Pole and zero must be close together

e Increase value of error constant:
® Want to have a large value for ajg = z/p.
® How can that happen if z and p are close together?
® Only if zand p are both small, i.e., close to the origin



Lag comp. design via Root
Locus
© Obtain the root locus of uncompensated system
® From transient performance specs, locate suitable
dominant pole positions on that locus
© Obtain the loop gain for these points, Kunc = KampKa;
hence the (closed-loop) steady-state error constant
O Calculate the necessary increase. Hence ajag = z/p
@ Place pole and zero close to the origin (with respect to
desired pole positions), with z = ajagp.
Typically, choose z and p so that their angles to desired
poles differ by less than 1°.
0 Set K¢ = Kamp

What if there is nothing suitable at step 2?
® Perhaps do lead compensation first,

¢ then lag compensation on lead compensated plant.
i.e., design a lead-lag compensator



Example

Compensator Process

»?—» G(s) |t G T )
[ ]

1 H(s) [«

Let’s consider, again, the case with G(s) = ﬁ
Design a lag compensator to achieve damping coefficient
¢ =~ 0.45 and velocity error constant K, > 20

Note: we will get a different closed loop from our lead
design.

First step, obtain uncompensated root locus, and locate
desired dominant pole locations



Uncompensated root locus
In this example, this step is the same as the first step in our
lead design example

Aeal partof

e So, yes, it is possible to achieve a damping coefficient
¢ =~ 0.45 using proportional control

e What is the gain that puts the closed loop poles there?



Finding the gain for prop. control

[ distances from OL poles
[ 1 distances from OL zeros

e That gainis K = KampKg =

g

Feal part of &

e K=djd>, =5.



Evaluate the velocity error
constant, and choose z/p

Velocity error constant of uncompensated loop:
Kv,unc = lims_,0 SGc(S)G(S) = KampKG/z

S'nce KG — 1 and Kamp - 5, Kv7unc - 25

In order to obtain K, > 20, the factor by which we need
to increase Ky unc by at least 20/2.5 =8

That implies that in the design of our lag controller, we
should choose pole and zero such that z/p > 8,

where z is chosen to be close to the origin with respect
to dominant closed-loop poles, so that the root locus
doesn’t change too much near those dominant
closed-loop poles



Positioning zero and pole
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with z/p > 8



Zooming in
e Try —z = —0.1, along with —p = —1/80.

* Angles from new open-loop zero and open-loop pole to
desired closed-loop pole position are pretty close.

e Therefore, their effects will nearly cancel out in phase
criterion at values of s near box

® As a result, compensated root locus should pass close by
the desired positions



Lag compensated root locus

Imaginary part of 5
x

#
’

L e L L L
28 2 15 1 0.5 (]
Real part of 5

* Yes, indeed, the lag compensated root locus does pass
close by the desired positions



Imaginary part of 3

Lag compensated root locus,

zoomed in
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Choosing K.

® Choose K; to be the same as Ky from the
uncompensated design

e Thatis, Ko =5
® Plot actual closed loop poles on the locus (asterisks)

Imaginary part of
4

Real part of 5



Imaginary part of 3.

Zoomed in
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Comparisons to prop. design

Closed-loop pole and zero positions
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Comparisons

Prop.-contr. Lag contr.
Controller, G¢(s) 5 (E)s(j»-‘:_?Bl)))
5(s+0.1
OLTF Ge()G(S) gy S =
Y 5 5(s+0.1

CLTF, % S(512)55 s(s+2)(s+(1s/80)+)5(s+0.1)
CL poles 142 —0.955+j1.979, —0.104
CL zeros 00, 00 —0.1, 00,00

. 5 4.999(147x10™*s) —0.004
CL TF, again #12515 190951482 T 510104

e Complex conjugate poles still dominate

¢ Closed-loop zero at -0.1 (which is also an open-loop
zero) reduces impact of closed-loop pole at -0.104;
residue of that pole in partial fraction expansion is small



Amplituce

Ramp response

Linear Simulation Results

——— Propertionally Controded
Lag Contrafled
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Tirme (saconds)



Ramp response, detalil

Linear Simulation Results
00 ' '

——— Propertionally Controded
aa | Lag Coniralled
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Step response

Step Response

—— Propartianaly Controbied
——— Lag Cantroiled

Ampitude
o

Tirmna (seconds)

Note longer settling time of lag controlled loop,
and slight increase in overshoot, due to extra closed-loop

pole-zero pair that do not quite cancel each other out



Prop, Lead, Lag Design
Comparisons

Recall the design example that we have considered for lead and lag
designs:

For G(s) = S(S+2
® damping coefficient ¢ ~ 0.45 and

and with H(s) = 1, design a compensator to achieve:

® velocity error constant K, = lims_.o SG:(s)G(s) > 20
* swift transient response (small settling time)

We have done
® Proportional design (blue), which failed to meet specifications
® |ead design (green)
e Lag design (red)



Prop, Lead, Lag Design
Comparisons
Closed-loop pole and zero positions

Imaginary part of s
#
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Real partof s



Bode, open loop, Gy(jw)G(jw)

Magnitude Bods Diagram of CG

Magrisucs |o)

Fraquency (radis|

Recall K, = lims_,0 sG:(S)G(S)

Low freq’s: curves approx linear with slope -20dB/dec.

That is 20 log;, (] Ge(jw) G(jw)|) =~ 20 logo(A) — 20 logo(w)
That means G.(jw)G(jw) ~ ,%? Ge(s)G(s)~ 4, = K/ =A
Thus, when low freq. slope is -20dB/dec, “higher” curves mean
larger K,



Low freq. analysis

Let’s now do that analytically
For each design, for small s, G¢(s)G(s) ~
G(s) = 55

s(s+2)

nlx

Prop: G.(s) =5. Hence, A=2.5

Lead: G.(s) = %. Hence, A =223

Lag: Gc(s) = %. Hence, A = 20



Prop, Lead, Lag Design
Comparisons

For given example: G(s) = S+2 ,(~0.45

Prop.-contr. Lead contr. Lag contr.
Gols) s e deny
Y(s) 5 131(140.013s)  1.71 4.999(147x10~%s) 4 =0.004
A(s) s242s+5 s248.945+100  5+5.59 §24+1.909s+4.827 5+0.104
CL poles —1+j2 —4.47 £+ j8.94, —5.59 —0.955 + j1.979, —0.104
CL zeros 00, 00 —4.47, 00, 00 —0.1, 00,0
1/Ky 0.4 0.045 0.05

¢ Lag design retains similar CL poles to prop. design,
plus a “slow” pole with a small residue

e CL poles of lead design quite different

* Lead and lag meet K, specification (1

/Kv = €ss unit ramp)



Amplitude

Ramp response

Linear Simulation Results

Propartionally Contralled |
Lead Contralied
Lag Controlled




Amplitude

Ramp response, detail

Lingar Simulation Resulls
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Amplitude

Step response

Step Response
— Proportionally Controlied
Lead Controlled
Lag Centratled
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Amplitude

1.02

Step response, detalil

Step Response

—— Propoertionally Caontrolied
Lead Controlled
Lag Controtled
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Anything else to consider?



Anything else to consider?

' S@‘”__?:m
With H(s) = 1,
G:(s)G(s) G(s)
Y& =1 Tamas MOt T amae ©
Ge(5)G(S) )

" 14 Gs(s)G(s)

G(s

1 )
ES) =G mas M ~ 116960
Ge(s)Gls)
(s)

T 11 G.(s)G(s)

Td(S)



Amplitude

Response to step disturbance

Step Response
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Response to step disturbance,
detail late
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Homework: Show that egs for a step disturbance is 0.2,
0.0225 and 0.025 for prop., lead, lag, respectively



Error due to Gaussian sensor
noise




Bode diagram of
Ge(s)G(s)/(1 + Ge(s)G(s))
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® Prop. and lag designs do a better job at filtering out the higher
frequency noise components

® You could also see this bandwidth diff. in open loop Bode plots
® Reduced bandwidth also means slower step and ramp responses



Insights

¢ |f we would like to improve the transient performance of
a closed loop

® We can try to place the dominant closed-loop poles in
desired positions

® One approach to doing that is lead compensator design

* However, that typically requires the use of an amplifier
in the compensator, and hence requires a power supply

® Broadening of bandwidth improves transient
performance but exposes loop to noise

¢ |f we would like to improve the steady-state error
performance of a closed loop without changing the
dominant transient features too much
* We can consider designing a lag compensator to
provide the required gain
® However, that typically produces a “weak” slow pole that
slows the decay to steady state



What if we want to do more?

What happens if we want to improve transient performance
and improve steady-state error?

For example what if we want to design a compensator for
G(s) = oG +2 that achieves
© Specified maximum overshoot; minimum value for ¢

® Specified (2%) settling time; largest (least negative) real
part of closed loop pole

® Specified steady-state error for ramp input;
min. value for K|, related to DC open loop “gain”

Lead compensation gives (some) ability to address 1 and 2

Lag compensation gives (some) ability to address 3

What should we do?



Lead-lag compensation

e Here is one thing that we can do:

e Step 1: Design a lead compensator Gg jead(S) for the
process G(s) to change the shape of the root locus and
choose the gain so that the poles are in the desired
position

® Step 2: Design a lag compensator, G ag(S) to leave
the dominant closed-loop poles of the
lead-compensated process G(S) = Gg lead(S)G(S) in
approximately the position but provide extra
low-frequency gain

¢ This is called a lead-lag controller:
Gc(S) = G lead-lag(S) = Gc,lag(S) Ge,lead(S)



Lead-Lag Comp. example

Consider a case with G(s) = 3y and H(s) =

s(s+
Design a compensator to achieve:

e damping coefficient ( ~ 0.45

¢ dominant poles with real parts ~ —4.5, so that they
correspond to a 2% setting time of ~ ;= ~ 0.9s

¢ velocity error constant K, = limg_,q ch( )G(s) > 40

What to do?
e Qur second lead compensator (with the green root locus),
Ge.lead(S) = %, achieves the first two requirements

* However, that design has K, ~ 22.3

* Now design a lag compensator to increase K, to 40



Lead-Lag Design
i GcJead(s)G(s) haS KV ~ 22.3
® | ag compensator must increase this to around 40.
Therefore, we need Zjag/piag ~ 1.8.

¢ Looking at the closed loop poles of lead compensated plant
(green, see also table on slide 33),

we can try Zg = 0.18, pag = 0.1.

e Therefore G jead-ag(S) = %



Prop, Lead, Lag, Lead-Lag
Design Comparisons
Closed-loop pole and zero positions

Imaginary part of s
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Bode, open loop, Gy(jw)G(jw)

Magnitude Bods Diagram of CG

Magriude (o8

Fraquency (radis|

Recall K, = lims_,0 sG:(5)G(S)
At low freq. slope is -20dB/dec. Hence G.(S)G(S) ~ 4.
Hence, K, = A.

Since Gc,lead-lag(s) = %s Alead-lag =40.23

By comparison with slide 70 (and as seen in plot),
Alead-lag > Aead 2 Alag > Aprop



Lead, Lead-Lag Comparisons

Prop. and Lag designs are on slide 71

Lead contr. Lead-Lag contr.
Go(s) I 0 e
Y(s) 131(140.0130s) _ 1.71 131(1+0.0132) _ 1.73 6.15x10~4
R(s) 2+8.945+100  S+5.59  218.825+99.46  S+5.60 5+0.1806
CLpoles —4.47 +j8.94, —5.59 —4.41 + j8.95, —5.60, —0.1806
CL zeros —4.47, 00, 00 —4.47,—-0.18, 00, 0
1/Kv 0.045 0.0249

¢ |ead-lag design retains similar CL poles to lead design,
plus a “slow” pole with very small residue

¢ |Lead-lag will have smaller steady-state error for a ramp

input.

¢ Anything else? Recall larger low-frequency gain
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Ampditucse

Ramp response, detalil

Linear Simulation Results
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Step response

Step Response
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Response to step disturbance

Step Response
0.25
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= Lead Cantraled
= Lay Cantrisled
| == Lead-Lag Conwated |

Amplituce

Tirmna (seconds)

Note reduced steady-state disturbance error of lead-lag
design. This is due to larger K, which comes from larger
low-frequency “gain”



Error due to Gaussian sensor
noise

Linear Simulation Results
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Bode diagram of
Ge(s)G(s)/(1 + Ge(s)G(s))

Magnitude Bade Diagram of CO/11+00)

agnit (46)

Frequercy fradfs)

® Prop. and lag designs do a better job at filtering out the higher
frequency noise components
® You could also see this bandwidth diff. in open loop Bode plots

® Reduced bandwidth also means slower step and ramp responses



A prelude to frequency-domain
design

e In our design process there were connections between
performance measures and the frequency responses of
the open loop and the closed loop.

* Perhaps we might be able to build a design technique
around Bode magnitude and phase diagrams of the
open-loop transfer function, rather than the open-loop
poles and zeros
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