Lecture - 12

Prob. 2 : Derive DIT FFT flow graph for $N=4$ hence find DFT of $x(n)=\{1,2,3,4\}$ Soln. :

First stage of decimation :

We have the equations for first stage of decimation.

$$
\begin{align*}
X(k) & =F_{1}(k)+W_{N}^{k} F_{2}(k), & k=0,1 \ldots \frac{N}{2}-1 \tag{1}\\
X\left(k+\frac{N}{2}\right) & =F_{1}(k)-W_{N}^{k} F_{2}(k), & k=0,1, \ldots \frac{N}{2}-1
\end{align*}
$$

Here $N=4$

$$
\begin{array}{rlr}
\therefore \mathrm{X}(\mathrm{k}) & =\mathrm{F}_{1}(\mathrm{k})+\mathrm{W}_{4}^{\mathrm{k}} \mathrm{~F}_{2}(\mathrm{k}), & \mathrm{k}=0,1 \\
\text { and } \mathrm{X}(\mathrm{k}+2) & =\mathrm{F}_{1}(\mathrm{k})-\mathrm{W}_{4}^{\mathrm{k}} \mathrm{~F}_{2}(\mathrm{k}), & \mathrm{k}=0,1 \tag{4}
\end{array}
$$

Putting values of k in Equation (3) we get,

$$
\left.\begin{array}{l}
X(0)=F_{1}(0)+W_{4}^{0} F_{2}(0) \tag{5}\\
X(1)=F_{1}(1)+W_{4}^{1} F_{2}(1)
\end{array}\right\}
$$

Similarly putting values of k in Equation (4) we get,

$$
\left.\begin{array}{l}
X(2)=F_{1}(0)-W_{4}^{0} F_{2}(0) \tag{6}\\
X(3)=F_{1}(1)-W_{4}^{1} F_{2}(1)
\end{array}\right\}
$$

This signal flow graph is shown in Fig. G-12(a)

Fig. G-12(a)

Now we will replace each 2-point DFT by butterfly structure as shown in Fig. G-12(b).

Fig. G-12(b)
The given sequence is,

$$
x(n)=\{1,2,3,4\}
$$

The different values of twiddle factor are as follows :

$$
\begin{aligned}
W_{4}^{0} & =1 \\
W_{4}^{1} & =e^{-\frac{j 2 \pi}{4} \cdot 1}=e^{-\frac{j \pi}{2}} \\
& =\cos \frac{\pi}{2}-j \sin \frac{\pi}{2}=-j
\end{aligned}
$$

The output $s(n)$ is,

$$
\begin{aligned}
& s_{0}=x(0)+x(2)=1+3=4 \\
& s_{1}=x(0)-x(2)=1-3=-2 \\
& s_{2}=[x(1)+x(3)] W_{4}^{0}=2+4=6 \\
& s_{3}=[x(1)-x(3)] W_{4}^{1}=(2-4) \cdot(-j)=2 j
\end{aligned}
$$

The final output is,

$$
\begin{aligned}
& X(0)=s_{0}+s_{2}=4+6=10 \\
& X(1)=s_{1}+s_{3}=-2+j 2 \\
& X(2)=s_{0}-s_{2}=4-6=-2 \\
& X(3)=s_{1}-s_{3}=-2-j 2
\end{aligned}
$$

Thus,

$$
\begin{aligned}
X(k) & =\{X(0), X(1), X(2), X(3)\} \\
& X X(k)=\{10,-2+j 2,-2,+2
\end{aligned}
$$

Prob. 3 : Let $x(n)$ be a finite duration sequence of length 8 such that $x(n)=\{-1,0,2,0,-4,0,2,0\}$
(a) Find $X(k)$ using DITFFT flow graph.
(b) Using the result in (a) and not otherwise find DFT of sequence $x_{1}(n)=\{-1,2,-4,+2\}$. Justify your answer.
(c) Using result in (b) find DFT of sequence

$$
x_{2}(n)=\{-4,+2,-1,+2\}
$$

Soln. :
(a) This flow graph is as shown in Fig. G-11(a)

Here $s_{1}(n)$ represents output of stage -1 and $s_{2}(n)$ represents output of stage -2 . The different values of twiddle factor are as follows :

$$
\begin{aligned}
& W_{8}^{0}=e^{0}=1 \\
& W_{8}^{1}=e^{-j \frac{\pi}{4}}=0.707-j 0.707 \\
& W_{8}^{2}=e^{-\frac{j \pi}{2}}=-j \\
& W_{8}^{3}=e^{-\frac{j 3 \pi}{4}}=-0.707-j 0.707
\end{aligned}
$$

Output of stage - 1 :

$$
\begin{aligned}
& \mathrm{s}_{1}(0)=\mathrm{x}(40)+\mathrm{W}_{8}^{0} \mathrm{x}(4)=-1+1 \cdot(-4)=-5 \\
& \mathrm{~s}_{1}(1)=\mathrm{x}(0)-\mathrm{W}_{8}^{0} \mathrm{x}(4)=-1-1(-4)=3 \\
& \mathrm{~s}_{1}(2)=\mathrm{x}(2)+\mathrm{W}_{8}^{0} \mathrm{x}(6)=2+1 \cdot(2)=4 \\
& \mathrm{~s}_{1}(3)=\mathrm{x}(2)-\mathrm{W}_{8}^{0} \mathrm{x}(6)=+2-1 \cdot(2)=0
\end{aligned}
$$

$$
\begin{aligned}
& s_{1}(4)=x(1)+W_{8}^{0} x(5)=0+1 \cdot(0)=0 \\
& s_{1}(5)=x(1)-W_{8}^{0} x(5)=0-1(0)=0 \\
& s_{1}(6)=x(3)+W_{8}^{0} x(7)=0 \\
& s_{1}(7)=x(3)-W_{8}^{0} x(7)=0-1 \cdot(0)=0
\end{aligned}
$$

Output of stage-2:

$$
\begin{aligned}
& s_{2}(0)=s_{1}(0)+W_{8}^{0} s_{1}(2)=-5+1 \cdot(4)=-1 \\
& s_{2}(1)=s_{1}(1)+W_{8}^{2} s_{1}(3)=3-j(0)=3 \\
& s_{2}(2)=s_{1}(0)-W_{8}^{0} s_{1}(2)=-5-1 \cdot(4)=-9 \\
& s_{2}(3)=s_{1}(1)-W_{8}^{2} s_{1}(3)=3+j(0)=3 \\
& s_{2}(4)=s_{1}(4)+W_{8}^{0} s_{1}(6)=0+1 \cdot(0)=0 \\
& s_{2}(5)=s_{1}(5)+W_{8}^{2} s_{1}(7)=0-j(0)=0 \\
& s_{2}(6)=s_{1}(4)-W_{8}^{0} s_{1}(6)=0-1 \cdot(0)=0 \\
& s_{2}(7)=s_{1}(5)-W_{8}^{2} s_{1}(7)=0+j(0)=0
\end{aligned}
$$

Final output:

$$
\begin{aligned}
& X(0)=s_{2}(0)+W_{8}^{0} s_{2}(4)=-1+1 \cdot(0)=-1 \\
& X(1)=s_{2}(1)+W_{8}^{1} s_{2}(5)=3+(0.707-\mathrm{j} 0.707) \cdot 0=3 \\
& X(2)=s_{2}(2)+W_{8}^{2} s_{2}(6)=-9-j(0)=-9 \\
& X(3)=s_{2}(3)+W_{8}^{3} s_{2}(7)=3+(-0.707-j 0.707) \cdot 0=3 \\
& X(4)=s_{2}(0)-W_{8}^{0} s_{2}(4)=-1-1 \cdot(0)=-1 \\
& X(5)=s_{2}(1)-W_{8}^{1} s_{2}(5)=3-1 \cdot(0)=3
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X}(6)=\mathrm{s}_{2}(2)-\mathrm{W}_{8}^{2} \mathrm{~s}_{2}(6)=-9+\mathrm{j}(0)=-9 \\
& \mathrm{X}(7)=\mathrm{s}_{2}(3)-\mathrm{W}_{8}^{3} \mathrm{~s}_{2}(7)=3-(-0.707-\mathrm{j} 0.707) \cdot 0=3
\end{aligned}
$$

Thus,

$$
\begin{gathered}
X(k)=\{X(0), X(1), X(2), X(3), X(4), X(5), X(6), X(7)\} \\
x X(\mathrm{k})=\{-1,3,-9,3,-1,3,-, 3)
\end{gathered}
$$

(b) Let $x(n)=\{a, b, c, d\}$ and let its DFT be the sequence $X(k)=\{A, B, C, D\}$. If we add one zero after each sample in $\mathrm{x}(\mathrm{n})$ then we will get the sequence.

$$
x_{1}(n)=\{a, 0, b, 0, c, 0, d, 0\}
$$

This process is called as upsampling process. Since in this sequence one zero is added after each sample; the entire DFT repeats one time. If we will add two zeros after each sample then entire DFT will repeat two times.

$$
\therefore \quad \operatorname{DFT}\left\{\mathrm{x}_{1}(\mathrm{n})\right\}=\mathrm{X}_{1}(\mathrm{k})=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}
$$

In part (a) for the sequence $x(n)$.

$$
x(n)=\{-1,0,2,0,-4,0,2,0\}
$$

We have obtained the DFT,

$$
X(k)=\{-1,3,-9,3,-1,3,-9,3\}
$$

Observe that first four DFT samples are repeated only once. This is because in $x(n)$, zero is added after each sample.

The given sequence is,

$$
x_{1}(n)=\{-1,2,-4,2\}
$$

So its DFT is,

$$
X_{1}(k)=\{-1,3,-9,3\}
$$

Justification of answer :

We will prove the property of DFT used in this example. Let $x(n)=\{a, b, c, d\}$ and $X(k)=\{A, B, C, D\}$.

Consider the sequence,

$$
x_{1}(n)=\{a, 0, b, 0, c, 0, d, 0\}
$$

According to the definition of DFT we can write,

$$
\begin{equation*}
X_{1}(k)=\sum_{n=0}^{7} x_{1}(n) \cdot W_{8}^{k n} \tag{1}
\end{equation*}
$$

We will divide the sequence $\mathrm{x}_{1}(\mathrm{n})$ into odd part and even part. Let $\mathrm{x}_{1}(\mathrm{n})$ represent even part and $\mathrm{x}_{1}(2 \mathrm{n}+1)$ represent odd part.

$$
\begin{equation*}
\therefore \quad X_{1}(k)=\sum_{n=0}^{3} x_{1}(2 n) W_{8}^{2 k n}+\sum_{n=0}^{3} x_{1}(2 n+1) W_{8}^{(2 n+1) \cdot k} \tag{2}
\end{equation*}
$$

Observe that in the first summation ' n ' is replaced by $2 n$ and in the second summation ' n ' is replaced by $(2 n+1)$. But in the second summation $x_{1}(2 n+1)$ represents odd samples of sequence $\mathrm{x}_{1}(\mathrm{n})$ and all these samples are zero.

$$
\begin{equation*}
\therefore \quad X_{1}(k)=\sum_{n=0}^{3} x_{1}(2 n) W_{8}^{2 k n} \tag{3}
\end{equation*}
$$

Now we have the property of twiddle factor.

$$
\begin{align*}
\mathrm{W}_{\mathrm{N}}^{2 \mathrm{kn}} & =\mathrm{W}_{\mathrm{N} / 2}^{\mathrm{kn}} \\
\therefore \quad \mathrm{~W}_{8}^{2 \mathrm{kn}} & =\mathrm{W}_{4}^{\mathrm{kn}} \\
\therefore \quad \mathrm{X}_{1}(\mathrm{k}) & =\sum_{\mathrm{n}=0}^{3} \mathrm{x}_{1}(2 \mathrm{n}) \cdot \mathrm{W}_{4}^{\mathrm{kn}} \tag{4}
\end{align*}
$$

But $x_{1}(2 n)$ represents even samples of $x_{1}(n)$. That means $x_{1}(2 n)=x(n)$.

$$
\therefore \quad X_{1}(k)=\sum_{n=0}^{3} x(n) W_{4}^{k n}=X(k)
$$

But $\mathrm{x}_{1}(\mathrm{n})$ is eight point sequence.

$$
\therefore \quad \mathrm{X}_{1}(\mathrm{k})=\{\mathrm{A}, \mathrm{~B} ; \mathrm{C}, \mathrm{D}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}
$$

(c) Here $\quad x_{2}(n)=\{-4,2,-1,2\}$

We have $\quad x_{1}(n)=\{-1,2,-4,2\}$

Let us plot the sequences $\mathrm{x}_{1}(\mathrm{n})$ and $\mathrm{x}_{2}(\mathrm{n})$ as shown in Fig. G-11(b) and G-11(c).

Fig. G-11

From these diagrams we can conclude that $x_{2}(n)$ is obtained by circularly rotating $x_{1}(n)$ by 2 positions in anticlockwise direction. That means $x_{2}(n)$ is obtained by delaying $x_{1}(n)$ by 2 positions.

$$
\therefore \quad x_{2}(n)=x_{1}((n-2))
$$

Now according to circular time shifting property,

$$
\mathrm{x}((\mathrm{n}-l))_{\mathrm{N}} \underset{\mathrm{~N}}{\stackrel{\mathrm{DFT}}{\longleftrightarrow}} \mathrm{X}(\mathrm{k}) \mathrm{W}_{\mathrm{N}}^{\mathrm{kl}}
$$

Thus in this case we can write,

$$
\begin{aligned}
\quad X_{2}(k) & =X_{1}(k) \cdot W_{4}^{2 k}=X_{1}(k) \cdot e^{-\frac{\mathrm{j} 2 \pi}{4} \cdot \mathrm{k}} \\
\quad \therefore \quad X_{2}(k) & =e^{-\frac{j \pi}{2} \cdot k} \cdot X_{1}(k) \\
\text { We have, } \quad X_{1}(k) & =\{-1,3,-9,3\}
\end{aligned}
$$

We will calculate sequence $X_{2}(k)$ for different values of k as follows :
For $k=0 \Rightarrow X_{2}(0)=e^{0} \cdot X_{1}(0)=-1$
For $\mathrm{k}=1 \Rightarrow \mathrm{X}_{2}(1)=\mathrm{e}^{-\mathrm{j} \pi} \mathrm{X}_{1}(1)=(\cos \pi-\mathrm{j} \sin \pi) \cdot 3=-3$
For $\mathrm{k}=2 \Rightarrow \mathrm{X}_{2}(2)=\mathrm{e}^{-\mathrm{j} \pi 2} \mathrm{X}_{1}(2)=(\cos 2 \pi-\mathrm{j} \sin 2 \pi) \cdot(-9)=-9$
For $k=3 \Rightarrow X_{2}(3)=e^{-j \pi 3} X_{1}(3)=(\cos 3 \pi-j \sin 3 \pi) \cdot 3=-3$
$\therefore \quad \mathrm{X}_{2}(\mathrm{k})=\left\{\mathrm{X}_{2}(0), \dot{\mathrm{X}_{2}}(1), \mathrm{X}_{2}(2), \mathrm{X}_{2}(3)\right\}$

Prob. 4 : Draw flow diagram of DITFFT for $\mathrm{N}=16$.

Soln. :

(1) Here $\mathrm{N}=16$, means it is 16 point DFT.
(2) Total number of stages $=4$
(3) The first stage of decimation using two 8-point DFT is shown in Fig. G-13(a).

Fig. G-13(a)
(4) In the second stage each 8 point DFT is divided into 2 four point DFTs as shown in Fig. G-13(b).

Fig. G-13(b)

Fig. G-13(c)

