EQUITY VALUATION

How to Find Your Bearings

BALANCE SHEET

VALUATION

• BOOK VALUE

• LIQUIDATION VALUE

• REPLACEMENT COST

DIVIDEND DISCOUNT MODEL

• SINGLE PERIOD VALUATION MODEL D_1 P_1 P_0 -----(1+r)(1+r)• MULTI - PERIOD VALUATION MODEL D_t ∞ Σ P_0 $(1+r)^{t}$ *t*=1 • ZERO GROWTH MODEL D P_0 ľ CONSTANT GROWTH MODEL D_1 P_0 r - g

TWO - STAGE GROWTH MODEL

$$P_{0} = D_{1} \begin{pmatrix} 1 - (1+g_{1})^{n} \\ 1+r \end{pmatrix} + P_{n} \\ + (1+r)^{n} \end{pmatrix}$$

WHERE

\boldsymbol{P}_n	$D_1 (1+g_1)^{n-1} (1+g_2)$	
$(1+r)^n$	<i>r</i> - <i>g</i> ₂	$(1+r)^n$

TWO - STAGE GROWTH MODEL : EXAMPLE

EXAMPLE THE CURRENT DIVIDEND ON AN EQUITY SHARE OF VERTIGO LIMITED IS RS.2.00. VERTIGO IS EXPECTED TO ENJOY AN ABOVE-NORMAL GROWTH RATE OF 20 PERCENT FOR A PERIOD OF 6 YEARS. THEREAFTER THE GROWTH RATE WILL FALL AND STABILISE AT 10 PERCENT. EQUITY INVESTORS REQUIRE A RETURN OF 15 PERCENT. WHAT IS THE INTRINSIC VALUE OF THE EQUITY SHARE OF VERTIGO ?

THE INPUTS REQUIRED FOR APPLYING THE TWO-STAGE MODEL ARE :

- $g_1 = 20$ PERCENT
- $g_2 = 10 \text{ PERCENT}$
- n = 6 YEARS
- r = 15 YEARS
- $D_1 = D_0 (1+g_1) = \text{RS.2}(1.20) = 2.40$

PLUGGING THESE INPUTS IN THE TWO-STAGE MODEL, WE GET THE **INT**RINSIC VALUE ESTIMATE AS FOLLOWS :

= 13.968 + 65.289 = RS.79.597

H MODEL

ILLUSTRATION: H LTD

IMPACT OF GROWTH ON PRICE, RETURNS, AND P/E RATIO

		$PRICE$ $P_{O} = \frac{D_{1}}{r - g}$	DIVIDEN YIELD (D ₁ /P ₀)	ND CAPITAL GAINS YIELD $(P_1 - P_0) / P_0$	PRICE EARNINGS RATIO (P / E)
LOW GRO	WTH FIRM	$P_{\rm O} = \frac{\rm RS.\ 2.00}{0.20 - 0.05} = \rm R$	S.13.33 15.0%	⁄o 5.0%	4.44
NORMALO FIRM	GROWTH	$P_{\rm O} = \frac{\rm RS.2.00}{0.20 - 0.10} = \rm F$	RS.20.00 10.09	% 10.0%	6.67
SUPERNO GROWTH	RMAL FIRM	$P_{\rm O} = \frac{\rm RS.\ 2.00}{0.20 - 0.15} = \rm F$	RS.40.00 5.0%	6 15.0%	13.33

EARNINGS MULTIPLIER

APPROACH

 $P_0 = m E_1$

DETERMINANTS OF m (P / E) D_1 $P_0 =$ *r* - *g* $E_1(1 - b)$ *r* - **ROE** x *b* (1 - b) $P_0 / E_1 =$ $r - ROE \times b$

CROSS -SECTION REGRESSION ANALYSIS

 $P/E = 8.2 + 1.5g + 6.7b - .2\delta$

- g =GROWTH RATE FOR 'NORMALIZED' EPS
- b = PAYOUT RATIO
- δ = STD. DEV .. OF % EPS CHANGE

• EVERY CONCEIVABLE VARIABLE & COMBINATION OF VAIRABLES .. TRIED..

• ALMOST .. ALL ... THESE MODELS .. HIGHLY SUCCESSFUL .. EXPLAINING STOCK PRICES .. AT A POINT .. TIME, BUT LESS SUCCESSFUL ... IN SELECTING APPROPRIATE .. STOCKS .. BUY .. SELL.

• WHY

1. MARKET TASTES CHANGE

• WEIGHTS CHANGE

2. INPUT VALUES CHANGE OVER TIME
• DIV ... & GROWTH IN EARNINGS

3. THERE ARE FIRM EFFECTS NOT CAPTURED BY THE MODEL

P / E BENCHMARK RULES OF THUMB

• **GROW**TH RATE IN EARNINGS

10%	15%	20%	25%	35%	
	1	1	- 922		
NOM	INAL INTEREST RATE	.12	- 8.33		
		1	- 5.00		
		.20	- 5.00		
	1	1	- 25		
	REAL RETURN	.04	- 25		
	$\frac{1}{} = 16.67$				
	.06				
• $\frac{0.5}{.1815} = 16.67$		PAYOUI RAIIO			
		REQ. RET - GR. RATE			

GROWTH AND P / E MULTIPLE

	CASE A : NO GROWTH			CASE B : 10 PERCENT GROWTH				
	YEAR	<u> </u>	YEAR 1	YEAR 0	YEA	<u>R 1</u>		
TOTAL AS	SSETS 100		100	100	11	0		
NET WOR	TH 100		100	100	11	0		
SALES	100		100	100	11	0		
PROFIT A	FTER							
TAX	20		20	20	2	22		
DIVIDEN	DS 20		20	10	1	.1		
RETAINE	D							
EARNING	S -		-	10	1	.1		
		CASEA			CASE B			
	NO GROWTH			GROWTH				
	DISCOUNT	DISCOUNT	DISCOUNT	DISCOUNT	DISCOUNT	DISCOUNT		
	RATE: 15%	RATE: 20%	RATE: 25%	RATE: 15%	RATE: 20%	RATE: 25%		
VALUE	20 / 0.15	20 / 0.20	20 / 0.25	10 / (0.15	10 / (0.20	10 / (0.25		
				- 0.10)	- 0.10)	- 0.10)		
	= 133.3	= 100	= 80	= 200	= 100	= 66.7		
PRICE-	133.3 / 20	100 / 20	80 / 20	200 /20	100 / 20	66.7 / 20		
EARNINGS	= 6.67	= 5.0	= 4.0	= 10.0	= 5.0	= 3.33		
MULTIPLE								

]	E / P, EXPEC	TED RE	TURN, AN	D GROW		
	1	2				
	$E_1 = I_1 = I_2$	$D_1 Ext{ } E_2 = D_2 ext{ } E_3 = 15$				
	<i>∤</i> ° =	= 15%	$P_0 = \frac{15}{0.15} = 1$.00		
I P	NVESTMENT RS. 1 NPV PER SHARE =	5 PER SHARE 1 - 15 +	IN YEAR 1 EAF = 0	RNS 15%		
		0.15				
RATE OF RETURN	INCREMENTAL CASH FLOW	PROJECT'S NPV IN YEAR 1	IMPACT ON SHARE PRICE IN YEAR 0	SHARE PRICE IN YEAR 0 , P_{θ}	E ₁ / P ₀	r
0.05	0.75	-10	-8.70	91.30	0.164	0.15
.10	1.50	-5	-4.35	95.65	0.157	0.15
.20	3.00	5	4.35	104.35	-0.15 0.144_	0.15
.25	3.75	10	8.70	108.70	0.138	0.15

IN GENERAL, WE CAN THINK OF THE STOCK PRICE AS THE CAPITALISED VALUE OF THE EARNINGS UNDER THE ASSUMPTION OF NO GROWTH PLUS THE PRESENT VALUE OF GROWTH OPPORTUNITIES (PVGO).

$$P_0 = \frac{E_1}{r} + PVGO$$

MANIPULATING THIS A BIT, WE GET

$$\frac{E_1}{P_0} = r \left[\begin{array}{c} PVGO \\ 1 - P_0 \end{array} \right]$$

FROM THIS EQUATION, IT IS CLEAR THAT :

- EARNINGS-PRICE RATIO IS EQUAL TO *r* WHEN PVGO IS ZERO.
- EARNINGS-PRICE RATIO IS LESS THAN *r* WHEN PVGO IS POSITIVE.
- EARNINGS-PRICE RATIO IS MORE THAN *r* WHEN PVGO IS NEGATIVE.

PRICE TO BOOK VALUE RATIO (PBV RATIO)

Market price per share at time t **PBV** ratio = Book value per share at time t The PBV ratio has always drawn the attention of investors. **During** the 1990s Fama and others suggested that the PBV ratio explained to a significant extent the returns from stocks.

DETERMINANTS OF THE PBV RATIO D_1 r-g $D_1 = E_1 (1-b) = E_0 (1+g) (1-b)$ $P_0 = \frac{E_0 (1+g) (1-b)}{r-g}$ $E_0 = BV_0 \times ROE$ $P_0 = \frac{BV_0 (ROE) (1+g) (1-b)}{2}$ r-g**PBV ratio** = $\frac{P_0}{a} = \frac{ROE(1+g)(1-b)}{a}$ r - g BV_0

PRICE TO SALES RATIO (PSR RATIOS)

- In recent years PSR has received a lot of attention as a valuation tool. The PSR is calculated by dividing the current market value of equity capital by annual sales of the firm.
- Portfolios of low PSR stocks tend to outperform portfolios of high PSR stocks.
- It makes more sense to look at PSR/Net profit margin as net profit margin is a key driver of PSR.

EQUITY PORTFOLIO MANAGEMENT

PASSIVE STRATEGY

- BUY AND HOLD STRATEGY
- INDEXING STRATEGY

ACTIVE STRATEGY

- MARKET TIMING
- SECTOR ROTATION
- SECURITY SELECTION
- USE OF A SPECIALISED CONCEPT

FORECASTING THE AGGREGATE STOCK MARKET RETURN

- Stock market returns are determined by an interaction of two factors : investment returns and speculative returns.
- In formal terms :

 $SMR_{n} = [DY_{n} + EG_{n}] + [(PE_{n} / PE_{0})^{1/n} - 1]$ Investment return Speculative return

where : SMR_n = annual stock market return over a period of *n* years

- DY_n = annual dividend yield over a period of *n* years
- EG_n = annual earnings growth over a period of *n* years
- PE_n = price-earnings ratio at the end of *n* years
- PE_0 = price-earnings ratio at the beginning of *n* years.

ILLUSTRATION

Suppose you want to forecast the annual return from the stock market over the next five years (*n* is equal to 5). You come up with the following estimates. $DY_5 = 0.025$ (2.5 percent), $EG_5 = 0.125$ (12.5 percent), and $PE_5 = 18$. The current PE ratio, PE_0 , is 15. The forecast of the annual return from the stock market is determined as follows:

```
SMR_5 = [0.025 + 0.125] + [(18/15)^{1/5} - 1]
```

```
= [0.15] + [0.037]
```

= 15 percent + 3.7 percent = 18.7 percent

15 percent represents the investment return and 3.7 percent represents the speculative return.

SUMMING UP

- While the basic principles of valuation are the same for fixed income securities as well as equity shares, the factors of growth and risk create greater complexity in the case of equity shares.
- Three valuation measures derived from the balance sheet are: book value, liquidation value, and replacement cost.
- According to the dividend discount model, the value of an equity share is equal to the present value of dividends expected from its ownership.
- If the dividend per share grows at a constant rate, the value of the share is : $P_0 = D_1 / (r g)$
- A widely practised approach to valuation is the P/E ratio or earnings multiplier approach. The value of a stock, under this approach, is estimated as follows:

 $\boldsymbol{P}_0 = \boldsymbol{E}_1 \times \boldsymbol{P}_0 / \boldsymbol{E}_1$

 In general, we can think of the stock price as the capitalised value of the earnings under the assumption of no growth plus the present value of growth opportunities (PVGo)

$$P_0 = \frac{E_1}{r} + PVGO$$

- Apart from the price-earnings ratio, price to book value (PBV) ratio and price to sales (PSR) ratio are two other widely used comparative valuation ratios
- **Two broad approaches are followed in managing an equity portfolio : passive strategy and active strategy.**
- Stock market returns are determined by an interaction of two factors : investement returns and speculative returns.