[ecture - 20

Digital Filter-FIR Filter Structures



~1.1.2  Transfer Function of FIR Filters :
We know that FIR stands for finite impulse response. The difference equation of FIR system
is,
: M-1 ' ' ,
Cy(n) = D, b x(n-k) (D)
k=0
Equation (1) shows that the system has length M as the limits of summation are from
0 to M — 1. These limits also indicates that the system is causal.
Taking Z-transform of Equation (1) we get,
M-1
Y(Z) = Y b 2z *X(k) _ (2)
» k=0 ‘
Here we have used time shifting property of Z-transform. .

Z{x(n-k)} = Z7¥X(x)



Now the system transfer function is given by,

Y(Z)
X(Z)
Thus from Equation (2) we get,

H(Z) =

-.(3)

Equation (3) is called as system transfer function of FIR filter.

1.2 Direct Form Structure :

The direct form realization of FIR filter can be obtained by using the equation of linear
convolution. It is,

y(n) = Y h(k)x(a-k) S
k=—co .
If we consider that there are ‘M’ samples then Equation (1) becomes,
M-1
y(n) = Y h(k)x(n-k) : | -2
k=0 |

_ Expanding Equation (2) we get,
y(n)=h(0)x(n)+h(1)x(n-1)+h(2)x(n-2)+...+h(M-1)x(n-M+1) ..(3
How to draw the structure ? '

Now we will study how to draw structure (block diagram) for this filter. The first term in
Equation (3) is h(0)x(n). Here x(n) is input and h (0) is first sample of h(n). So h(0) is
constant. That means h (0)x (n) indicates that input x ( n) is multiplied by constant h(O) It is
-represented as shown in Fig. H-2(a).

h(0) x(n) -
Fig. H-2(a) : h(0)x(n)

The second term in Equation (3) is h(1)x (n—1). Here x (n— 1) indicates delay of input
X ( n) by 1 sample. The term h (1) x(n—1) 1s represented as shown in Fig. H-2(b).



x(n-1)

h(1) .

h(1) x(n—1)
Fig. H-2(b) : h(1)x(n-1)

Now, the th]l'd term is h(2)x(n-2). Here x (n-2) indicates delay of input x (n) by two
samples. It is represented as shown in Fig. H-2(c).

x(n-1) x(n-2)
h(t) S h(2)
h(1) x(n-1) h(2) x(n-2)

Fig. H-2(c) : h(2)x(n—2)

Similarly we can draw the block diégram for remaining terms of Equation (3). The total
structure for Equation (3) can be drawn by adding the block diagrams for all the terms. This
structure is shown in Fig. H-3(a). It is called as direct form realization of FIR system.

x(n-1)." x(n-2) x(n-3)

y h(M-1)

= ¥{n) = Output

Fig. H-3(a) : Direct form realization of FIR system

Observations :

L There are ‘M — 1"delay blocks. So this is canonic structure. -

2. Input signal is delayed ‘M — l times. So to storé this delayed input signal ‘M — 1" memory
locations are required. : :

3. This structure has V‘M — 1’ additions and ‘M’ multiplications.

4. Equation (3) shows that present input X(n) and past inputs (delayed inputs) e.g. x (n—1),
x (n—2) etc. are multiplied by the corresponding sample of h(n) that is h(0), h(1)... etc.

Thus output y (n) is weighted linear combination of present inpﬁt and past inputs. -
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pick-off node or tapped line. Now we can draw the same x(n) l x(n)

Fig. H-3(a) as shown in Fig. H-3(c). In this case it looks like
tapped delay line. Therefore the direct form realization
is also called as tapped or transversal delay line filter. x(m)

Fig. H-3(b) : Pick-off node
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h{hM-1)4 h(M-2) h(M-3) h(2) h(t) h(0)

Fig. H-3(c) : Tapped delay line ﬁlter

1.3 Cascade Form Structure :

Cascade means the number of stages are connected in series. Now we have the system
transfer function of the FIR system is given by, :

M-1 v
-k
H(Z) = ) bz (1)
k=0
Generally the higher order FIR filter is realised by using a series connection of different FIR
sections (cascade connection). Here each section is chavacterized by the second order transfer

function. Then due to cascade connection ; the total transfer function [ ;- {Z) ] will be multiplication
of all second order transfer functions.

H(Z) = H (Z) H,(Z)-H,(Z) .. Hk(Z‘_ (2)
Here Hk (Z) is the second order transfer function and it is given by,
_ -1 -2 :
H (Z) = bk0+kaZ +b,Z -(3)
Y, (2)
But we know that, Hk(Z) = Xk(Z)
Y, (Z)
k _ -1 -2
X (2) - bk0+bklz th,Z
K
Yk(Z) = kaXk(Z)+kaZ_le(Z)+bk22f2Xk(Z) .4

Taking inverse Z-transform (IZT) of both sides we get,
Y, (n) = bkoxk(n)+bk1xk(n—1)+bk2xk(n—2) .(5)

4



From Equation (5), we can draw the direct form realization of second order section as shown
in Fig. H-4(a).

X (n-1) X (n-2)

Y bo \ 4 Ybo
- |ProXi(n) brXin=1) | bipx(n-2)
B 4 Y
»(H) —>(+) > Yi(N) = Xyp.4(N)

Fig. H-4(a) : Direct-form realization of second order section

Now the total structure is obtained by cascadiﬁg all second order sections. The block
schematic of cascade structure is shown in Fig. H- 4(b)

¥1(n) =%(n) ¥o(n) = X3(n)

Fig. H-4(b) : Block diagram of cascade structure

Thus using Figs. H-4(a) and H-4(b), we can draw the cascade realization of FIR system as
shown in Fig. H-4(c).
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Fig. H-4(c) : Cascade realization of FIR system

tion is obtained by putting K = 0 in firstlstég a

Observatlons

1. This cascade form is canonic with respect to delay.
2. It has M —1 adders and M mu1t1p11ers for (M-1 ) ‘order FIR transfer function.



1.4 Frequency Sampling Structure :

The major advantage of designing FIR filters using frequency sampling structure is that; we
can design FIR filter at the frequencies of interest and not at all frequencies. So the design
complexity is reduced. '

Now in frequency sampling structure; the desired frequency response is specified at the set of
equally spaced frequencies as follows :

2n
W =0)k=ﬁ-(kf(1) ' «(1)
Here k=0,1,2, .. M%l '

M is an integer and o =0 or%

According to the definition of fourier transform we have,
M-1
H(w) = Y h(n)eion @)
: n=0 ' '
This equation gives the frequency response of input signal.

Putting Equation (1) in Equation (2) we get,

) M-1 ~j2—l\j;(k+oc)-n
H(w,) = ) h(n)e '
n=0
M-1 .
—j2n(k+o)n/M
H(o) = Y h(n)e -3
n=0

This set given by Equation (3) are called as frequency samples of H ( O ). Here H (@) is
same as DFT H (k + o). Now if o = 0, then H ( ® ) = H (k) which corresponas to M point DFT.

M-1
. -i2r(k+ /M

H(k+a) = Y h(n)e o<r®n ()

n=0 k
Using the definition of IDFT we can write,
M-1 ’
1 i2n(k+o)n/M
h(n) = M H(k+oa)e ()

k=0



Now we will obtain the equations in Z domain. According to the definition of Z-transform we have,
. M-1 : j ,

H(Z) = Y h(n)Z" ' ~ .(6)

n=0 | ' |
Putting Equation (5) in Equation (6), v
M-1 M-1 :
1 j2n(k+o)n/M -1

H(Z) = Y, M Y H(k+a)e v

n=0 k=0

Interchanging the order of summation we get,

M-1 M-1
H(Z) = Y, Hkta)|gp 2 & 2™zt Loy

k=0 n=90

Now we have the standard summation formula,

1_aN+1
R
1-a
n=0
Thus Equation (7) becomes,
M-1 N [ (_gMdom(k+a) }]
H(Z) = Y Hk+o)| g Hicaym o1l | ~(8)
‘ [V 1-¢ -z
k=0
Here the term e'Z"(ka) can be written as,
e]21t(k+oc) =e]2nk_e]27coc
And %™ = cos 2mk +j sin 2k = 1
Thus Equation (8) can be simplified as,
o o M-1
H(Z) = 177 Mg H(k+o) o
,( ) = M 1_ej211:(k+oc)/M‘Z—1 (9
k=0

This equation shows that H(Z) is characterised by set of frequency samples H(k+o).
Now we can write H (Z) as the function of two cascade filters as,

CH(Z) = H(Z) H,(Z)

1 M i2mo Y '
Let H(Z) = M(1~z ¢ ) | .(10)
This is called as All-Zero system (filter) and zeros are located as,
7 = ej21c(k+oc)/M

k



M_.
H(z) = Y

Similarly,

k=0

1 :
H(k+o)
l_eiZn(ka)/M.'Z—l

This consists of parallel banks of single pole.

«(11)

Now H, (Z) and Hy (Z) can be realised separately. Then H(Z) is obtained by connecting

H, (Z) and H, (Z) is cascade form as

shown in Fig. H-5.

j2n[1+a]/M -
e
KJV
()
H[2+aT\P
i2n[+a]/M A
e
O A’, yin]
’ HM-1+a]
eizﬂ[M—‘Ha]/M
_
H,[2] w
Fig. H-5 : Frequency sampling realization



1.5 Laitice Ladder Structure for FIR Filters :

Consider M® order FIR system with the transfer function,

M
. -k
H,(Z) = 1+ Y By(k)ZEM21
' k=1
Here M denotes the degree of polynomial and Py, is coefficient.
"Thus when M = 0 we get,

H (Z) 1

Basically Hy, (Z) is the trénsfer function which can be written as,

4y (2) < oo YD)
input ~ X (Z)

]

Y(Z) X(Z)AHM(Z)'

Putting Equation (1) in Equation (3) we get,

M
Y(Z) = X(Z)| 1+ 2, BM(k)Z‘k
L k=1 J
, M
Y(Z) = X(Z)+X(Z) X B, (k)Z*
k=1
Taking IZT of both sides we get,
| y |
y(n) = x(n)+ 2, By (k) x(n=k)
k=1 .

Let M = 1 then Equation (5) becomes,

y(n). = x(n)+[31(1)x(n—1)....(Herek:M.: 1)

In.the simplest. way Equation (6) can be realized as shown in Fig. H-6(a).

(1)

2)

-(3)

(@)

..(5)

.(6)



y(n)

»
»

x(n-1) = By(1)

x(n—1)~—»
By(1)
(a)
Ay In] y ,+,A1[“1'= yint
«
X[n} o——
Ky
Byl L[ o
5N pi T
0 -z By 1] +

(b) Single stage lattice structure
Fig. H-6

Now the same output can be obtained by using the structure shown in Fig. H-6(b). This
structure is cailed as single stage lattice structure. This structure provides two outputs namely

A;(n) and By (n).
Here A (n) = Aj(n)+k Bj(n-1) -(T(a))
Ay and By, are constant multipliers.

In terms of x (n ) we can write,
: Al(n)=x(n)+k1x(n—1)_ ...(7(b))

Similarly, the other output can be written as,
B, (n) ='klA0(n)+B0(n~l) ' ’ ...(8@))

In terms of x (n) we can write,

B,(n) =k x(n)+x(n-1) ' ~(8(b)

We know that Equation (7(b)) is obtained by using single stage lattic structure. Equations (6)
and (7(b)) are same if,

AO(n)=x(n) and k1=|31(1)
Similarly, Equations (6) and (7(a)) are matching if,
Ay(n) = x(h),ﬁl(l):k1 and B (n-1) =x(n-1)



Here ‘k’ is called as reflection coefficient.

That means the same output can be obtained using single stage lattice structure.
Now for M

y(n)'

2; Equation (5) becomes, ‘ _ ‘
x(n)+B, (1)x(n-1)+B,(2)x(n-2) 9

As M = 2 we have to cascade two stages to obtain two stage lattice structure as shown in
Fig. H-6(c). '

Ag[n] m Aqln] ™ A, [n] =yin]

x[n}] o——

By [n]

Fig. H-6(c) : Two stage lattice strﬁcture
" From Fig. H-6(c) we can write,

Output of first stage :

A (n)

x(n)+k]x(n-—1) ...(10)

and Bl(n) klx(n)+x(n~l) . (1)

And the output of second stage is,

i

Ay(n) = A (n)+k,B (n-1) (12)
and | B,(n) =k,A (n)+B,(n-1) ' ..(13)
Now putting Equation (10) in Equation (12) we get,
A, (n) =x(n)+k1x(n—v1)+k2Bl(n—1) ’ o L(14)
From Equation (11) we can write,
B, (n-1) = k]x(n—1)+x(n~2)
Putting this value in Equation (14) we get, | |

A,(n)

x(n)‘+k1x(n—1)+k2[k1x(n—1)+x(n—2)]

A, (n) x(n)+k](1+k2)x(n—1)+k2x(11—2)‘ o .(15)



Observe that Equatior_xs (9) and (15) are matching,

Here k and k, are reflection coefficients. The same w.
. stages Finally M

Al

Here, B2 (2)

Ayin

Bolnl]

k, , B, (1)

orrb k, = B2(2), | or k, =

kl(1+k2)

B, (1)
1+B,(2)

stage lattice structure is obtained as shown in Fig. H-6(d).

stage

dy we can increase the number of

Ap_1 [n] = yIn]

: [M—‘1] "

Fig. H-6(d) : Mt order lattice structure

| Bm-1 [n]
I I



1.7 Structures for Linear Phase FIR Filters :

FIR filter is said to be having a linear phase structure if its unit impulse sequence is either
symmetric or antisymmetric about some point in time. That means FIR filter has linear phase if it

satisfies the condition.
"h(n) =h(M-1-n), n=0,1..M-1 .1
Here M = Number of samples ' o

The transfer function of FIR filter is given by,

M-1
H(Z) = » h(mZzZ™" : (2
’ n=0
Let us split the summation into two parts.
M, M-1
| 2 Z .
H(Z) = ) h(n)Z "+ h(nyz " (3)

n=

2|2

n=90



But for linear phase we have,
h(n) = h(M-1-n) = n =M-1-n
Putting this condition in the second summation of Equation (3) we get,
M M

=-1 —=-1

H(Z) = h(n)z”’+'2 h(M-1-n)z~(M-1-n) @
2 )y B

n=0 n=0

‘changed as follows -

H(Z) = 3 h(n)[Z "4z M-1-n), _ (5)
n=0
Case (i) For even M :
We know that H(Z) = Y(Z), thus Equation (5) becomes
R o ox@y |
M
Y(Z) 27! (M=-1-n)
X2 = z,h(n)[z +Z ]
n=0
(M ]
2 1 S

: | |
Y(Z) = { ¥ h(n)[z*“+2’(M“““)]I}X(Z)
| _
([ n=0 J
Now expanding the summation we get, ‘ _ ,
Y(2) = h(O)[1+Z“(M‘”]X(Z)+h(1)[Z“+Z“M‘2’]x(2)

M

-1

A

Mo
2]X(Z) :

+ ... +h

0=




Y(Z) = h(O)[x[2]+Z‘<M‘1)-X(Z)]+h(1)[Z‘?X(Z)+Z“(M‘2)X(Z)]

(M. _M —
o th %—1][2 [-2 1JX(Z)+Z>¥X(Z)] .» )

Taking IZT of both sides we get,

y(n) = h(p){-x(n)+x[n-(M—1)]}+h(1){x(n51)+x[nf(M—2')]}
+ ...+h(M—1){x{(n—(%——l)]+x(n—%)} ' » (7Y
Let M = 6. Thus Equation (7) becomes, o ' o

y(n)—h(O){x(n)+x(n 5)}+h(1)[x(n—1)+x(n 4}]+h(2‘)[x(n 2)+x(n~3)] (8
The realization of Equation (8) is shown i in Fig. H-8(a). -

x(n-1)

- X(n-2)

x(n)

® |z

x(n-3)

“h)

y(n)
Fig. H-8(a) : Linear phase FIR structure for M 6 (even)
Case (ii) : F or odd M :

When M is odd (let M = 5) we can simply write the difference equation as,
y(n) =h(0)x(n)+h(l)x(n—l)+h(2)x(n—2)+h(3)x(n—3)+h(4)x(nv—4) ..{(9)
But we have the condition for symmetry, ;
h(n) = h(M=1-n) (10)
Here M = 5. Thus from Equation (10) we get, - ‘ v

For n 0 = h(0)=h(4)

1 = h(1)=h(3)

For  n



For n=2 = h(2)=h(2)
« For n=3 = h(3)=h(1)
For n=4 = h(4)=h(0)

Thus Eqpation (9) becomes, _ N
y(n) = h(0)x(n)+h(1)x(n=1)+h(2)x(n-2)+h(1)x(n=3)+h(0)x(n-4)

y(n) h(0)[x(n)+x(n~- 4)]+h(1)[x(n~l)+x(n 3)]+h(2)x(n 2)
LL(10)

The realization of Equation (11) is shown in Fig. H-8(b).

x(n-1) - X(n-2)

x(n)

h(0) y h(2)

y(n)
Fig. H-8(b) : Linear phase FIR structure for M = 5 (odd)

“tlon of H(Z) for odd M can be exp
(M=1) M-3 -
5 <

S y ‘h(n)[Z‘"+Z‘(M

n=0

p :'cedure we can obtain the requured re

~ Solved Problems : - .

Prob. 1 :  Obtain linear phase realization of
' _ ' 72 _;
H(Z) = 1+ 7t +Z

Scln. : Given equation is,

— .Z—_l_ éti . ) "
H(Z)—1+4+4+Z v N
. — ‘ _—]-; i —.l —
R h(0) = 1, h(l)—4, h(2)_4, h(3)=1



Here M = 4 that means M is even.

Now we have the condition for symmetric response.

h(n) = h(M=1-n), n=0,1, .. M—1 .
For n=0 = h{0)=h(3)
Forr n =1 = h(l1)=h(2)

vThis realization is similar to Fig. H-8(a). So for M = 4; the realization is shown in Fig. H-9.

x(n—1)

x(n)

<

—\VJ

x(;u—2)

h(1} = h2) =%

y(n)

Fig. H-9

Prob. 2 : Realize a linear phase FiR filter with the following impulse response.
h(n) = 8(n)+%8(n—1‘)—%8(n—2)+8(n—4)+%8~(n-3)

Soin. : We can write the impulse response as,

1 11
h(n) = {1,5,—1,5,1}

T ,
h(O) = 1,h(1)=l, h(2)=—l,h(3)=l,h(4)=1
: 27 4 2
Here M =5 ‘
Now according to' the condition of Symmetry, .
h(n) = h(M~1-n), n=01 .. M-I
For  n =0 = h(0)=h(4)
For -n =1 = h(l)=h(3)
For n =2 = h(2)=h(2)

This is the case for M = 5 (odd). The realization is same as shown in Fig. H-8(b).



Prob. 3 :  An FIR filter is given by
‘ ' 4 3 -
y(n)-x(n)+§x(n—1)+§x(n—2)+3x(n 3)

Find the lattice structure coefficients.

Soln. :
: 4 3 AN 2
. y(n) = x(n)+§x(n—1)+Ex(n—2)+§x(n—3)
Taking Z-transform,
Y(Z) = X(Z)+§Z“X(Z)+%Z‘2X(Z)+ %2"3)((2)
- 4,-1,3,-2,2,-3
Y(Z)_ X(Z‘)[1+5‘z +ZZ +3Z J
Y (Z) : 4.1 3,2 2.__3 ' .
= H(Z)=1+_Z" "+-Z “+%Z !
As we know
_ -1
A _(Z) = Am_l(Z)+KmZ B _,(Z) ) -(2)
_ -1
B (Z) = K A (Z)+Z Bm_I(Z) _ (3)
A (Z)-K B _(Z)
A (2) = =2 m_m ' (4)
m-1 1~—K2
m
In above example, using step down recursion, as order of filter m = 3,
- - 14 4,-1,3,-2.2-3
A3(Z)_ 1+~SZ }22 TBZ
5 .
o, (3) = 3
as K3 = coefficient of lattice structure
..(5)
_ -3 -1
AS B3(Z) = Z A3(Z )
_ -3 41,3223
=7 [1+SZ +2Z +3Z}
_7-3,4,-2.3,-1,2
B,(Z) = Z +SZ +2Z +3
- 2,3,-1,4,-2, ,-3
B,(Z) = 3+ZZ +SZ +Z o _ .(6)



Now, A

m—

. AZ(Z)

Collecting same terms together

A,(2)

A,(Z)

0, (2)

Now, B,(Z)

B,(Z)

B,(Z)

(2) =

Am(zy-KQBm(Z)_

1-K2
m
A,(Z)-K; B;(Z)
1-K;]
i—lé—'22—3_2_2§—1ik-2 3]
[1+SZ +2Z +3Z } 3[3+22 +SZ +2 ]
(2}
, 3
4,-1,3,-2,2,-3_4_ -1_8,-2 2,-3
1452714527 %4527 -5-2 527032

()
=1 -1
Z[AJZ)}
-2 _9 51 872
z P_%z+mz]
-2 9 -1, 87 /
2775t Ty i%é//
87 9 -1, ,-2 :
50 252 -t -(8)



A,(Z)-K,B,(Z)

Now, : Al(Z) = )
1-K;
2 7-1,81,-2) 87(87 9 -1 -2
Q"zsz 50 2 J 50(50 25 2 Z J
EAN
5
87V [ 87x9
9 ,-1,87 -2 (L] 4 _87,-2
17252 +502 (5 [50><25)Z 50 %
A(Z) =

Collecting same terms together,

87Y_-1(783 9
1-150 1250 ~ 25
~ 7569
2500

A (Z)

(1-3.0276)-7"! (0.6264 - 0.36 )
1-3.0276

—2.0276 - 0.2664 7!
-2.0276

| 026642
~2.0276

= 1+0.1313869Z !

i
N
I

0.1314

Q
—
~
—
~—
1l

=
[

0.1314

x(n)






