1.1 Introduction :

- FIR stands for Finite Impulse Response. FIR filters are called as non-recursive filters because

they do not use the feedback. Before studying the design of FIR filters; we will discuss one
important characteristic of FIR filter. )

1.1.1  FIR Filters are Inherently Stable :

We know that LSI system is said to be stable if bounded input produces bounded output
(BIBO). We have the difference equation of FIR filter,

M-1
y(n) = z bkx(n—k) , _ (D
k=0 .
Taking Z transform of Equation (1) we get,
M-1 :
—k :
Y(Z) = ) b, Z7X(2) ()
k=0
’ Z
Now transfer functjon, H(Z) = ;EZ;
Thus from Equation (2) we get,
M-1 '
Y(Z) x .
H(Z) = = b Z
2) = %2 ) 3
. _ » k=0
Taking IZT of Equation (3) we get
b,  For 0<n<M-1 \
= n -
b(n) { 0 otherwise @)
Expanding Equation (1) we get, ,
y(n) = byx(n)+b x(n-1 )+ tby X (D-M+1) o)

Using Equation (4) we get,
y(n) = h(O)x(n)+h(1)x(n—1)+.....+‘h(M—1)x(h—M+‘1) ..(6)
Here h(0), h (1) ... are constants that means they are bounded. Now from Equation (6); the

output will be bounded if we apply bounded input. That means for every bounded input; the output
of FIR filter is bounded. Thus FIR filters are inherently stable. - :

1.2  Symmetric and Antisymmetric FIR Filters :

We will discuss the symmetry and antisymmétry of FIR filters. These conditions are related
to their unit sample response h ( n ).




The unit sample response of FIR filter is symmetric if it satisfies the condition.
h(n) = h(M-1-n) ... n=0,1... M-1 (1)
Here M = Number of samples; so if M = 8 we get,
forn=0 = h(0)=h(8-1-0)=h(7)
Forn=1 = h(1)=h(8-1-1)=h(6) etc.
If h(n) is symmetric then, the filter is symmetric.
Now unit sample response of FIR filter is antisymmetric if it satisfies the condition,
h(n) = -h(M-1-n), n=0,1..M-1 -(2)
If this condition is satisfied then the filter is antisymmetric -

Now the phase of FIR filter is given by,

—m(M—z——lj for IH(w)!I >0

/ZH(o) = (3)
_-mez‘llgm for IH (@)1 < 0

This equation shows that the phasé of FIR filter is piecewise linear. Thus for the symmetric

and antisymmetric FIR filters; the condition for linear phase is,

FIR filler can be characterized by,
M-1 :
H(Z) = Y h(k)z™* | | ()
k=0
Here M is the length of filter and M —1 is the order of filter. The frequency response for

different conditions is. as follows :
(D If M is odd and symmetric then,

N-3
o, —jo(M-1) M-1 2 M-1
H(®) =e 5 h| —— |+ D h(n)cosw | —5—-n
n=0
(2) If M is odd and antisymmetric then,
: ‘ M-3 ‘
j M- 1 2 M- 1
(0] - 1 - —
H(?) _h[ 5 ]+2 2 h(n)sm[ 3 n}(o.
n=0

3) If M is even and symmetric then,

21
2 h(n)cos[Mgl—; J(D

n=0

H'(ef‘”) =2




(4) If M is even and antisymmetric then,

M,
0] 2 . M-1 )
H(?) =2 by h(n)sin 70 |®
v n=0 ‘

1.2.1  Magnitude Specifications :

‘The magnitude specificéltions of FIR filter are as shown in Fig. J-1.

Here 5p = Peak passband deviation

88 = Stopband cieviation

o, = paSSband edge frequency
®, = Stopband edge frequency
Af = Transition width = msz—nmp

Passband Transition Stopband
band

Fig. J1: Magnitude specifications

Thus the magnitude specifications of FIR filter can be written as,

1-8< IH(w)I<1+8. for 0 < w<sw
A ¢ P P

and OSIH(co)I'SSS for o < osn

These are the magnitude specifications. For the phase response, we have assumed a linear
phase. Therefore while designing the FIR filter only the symmetry of the filter is indicated.




1.2.2 General Fllter Coefficient Equation :

The FIR and IIR filters are basically Linear shift Invanant (LSI) systems which are
charactenzed by unit sample response. The FIR system has finite duration unit sample response, as
follows,

h(n) =0 forn < 0and n 2 M.

FIR system is a nonrecursive system 1i.e. it depends only on past and present input. The
difference equation of LSI system is given as,

N | M
y(n) = = X a.y(n-K) + Y bx(n-K) (1)
K=1 K=0

But, the first term represents past outputs and second term represents past and present input.
Hence, the difference equation for FIR system is,

M
y(n) = 2, by x(n- K) . (2)
K=0
If we consider ‘M’ coefficients, then
M-1
y(n) = , bex(n-K) , ..(3)
K=0
Taking ‘Z’ transform of both sides,
_ M-1
Y(Z) = Y b.Z27%x(2)
K=0
M-1 : v
Y(Z) -K .
= b, Z ..(4
X(Z) AR @)
K=0
Let, Y(2) =H(Z) ..(5)
X(Z) \
which is a system function of FIR system. Hence, from Equatlon (4) and (5),
-1
_ -K
H(Z) = 2 by Z . ..(6)
K=0

_Taking inverse ‘Z’ transform of Equation (6) we get, unit sample response of FIR system as,

b for 0<n<M-1

h(n) = :
0 otherwise

Which gives filter coefficient that means it represents general filter coefficient equationt



1.3 Design of FIR Filters using Windows :

Different types of windows are used to design FIR . WRIE T “}
filter. First we will discuss the design of FIR filter using - -
rectangular window. The rectangular window is as shown - T‘f“;
in Fig. J-2 - —»n

Fig. J-2 : Rectanghlar window

It is denoted by Wy (n). Its magnitude is 1 for the range, n = 0 to M — 1. Now let hy(n)
be the impulse resporise having infinite duration. If hg (n) is multiplied by Wy (n) then a finite
impulse response is obtained as shownvin Fig. J-3. That means we will get only limited pulse of
hy(n); not all (eo) pulse. Since we are truncating the input sequence by using a window, this

process is called as truncation process. Since the shape of window function is rectangular; it is
called as rectangular window. ' '

)| < Muttiplication |

h(n)=hy(n) . Wgr

Fig. J-3 : Truncation process

Magnitude response of rectangular window :
The rectangular window is defined as,
1 forn=0,1,2..M-1 ‘
W, (n) = : } _ (D
0 otherwise



Let hy(n) be infinite duration impulse response. We know that the finite duration impulse
response h ('n) is obtained by multiplying hy (n) by Wg (n).
. h(n) =h (n)-Wg(n) ' | (2

We will denote fourier transform of Wy (n) by Wy (® ). Thus using the definition of fourier
transform we can write,

M-1 -
—jon
W (@) = ), We(n)e : 0
n=0
- But the value of Wy (n) is 1 for the range n=0to M- 1.
| M-1 |
—jon
We(o) = > 1l-e .(4)
n=0
We can represent the window sequence as,
'WR(n) =u(n)-u(n—-M)
here u (n) is unit step having duration n = 0 to n =.co and u(n—M) is delay unit step."
Thus Equation (4) becomes, '
: —jon
We(@) = 3 [u(n)-u(n-M)]e
n=0
—-jon —jon
W (o) = ) u(n)e - Y u(n-M)e ° ..(5)
n=0 n=0
Consider the first term at R.H.S. It represents fourier transform (FT) of unit step. And we
have, '
o . -ien o [ iy 1
FT.ofu(n) = Z 1-e = z (e )Zm
n=0 n=0 '

Now consider the second term. It represents the fourier tranform of delayed unit step.

~joM
FT.ofu(n-M) ¢—— ¢ F{u(n)}

. —j oM
_ e—JwM 1 _ e
1—-e1® 1-¢7J€




Thus Equation (5) becomes,

' 1 e "ioM
We(o) = TP P
1—-e™J 1—-e7!
S 1— -joM
—-e
W = — ...(6
R(0) =0 ©)

We will rearrange Equation (6) as follows,

oM M M M
2.2 _¢ %2792

[0}

- (@) e 0 o o
: e 12.ed7-e7 7. 703

oM oMo LM
Ly eIy — IO

W, (0) = ——— .9) , (D)
> ,

e 2|lelz-e7I2
We have the trignometric identity,
¥ =je .
e —e = 2sin6

Thus Equation (7) becomes,

WR(O)) = o (o
e 2 {2s1n[§)
oM
_j M i@ sin| 2
WR(m) =e 2.e72 ,
' [0
sin(EJ

%) ‘
inl 2 (M1 .
sin . —Jm(——z‘—] ’ (8)

WR(CO) = —.T.e
SIH(EJ

Now Wr (@) can be expressed in terms of magnithde and angle as;

i LW . N .
J£We (@) .(9)

WR(co) = IWR((o)l-e
Comparing Equations (8) and (9) we can write,
sin [ﬂ J '
2
IWR(m)I = ..(10)

-2



1.3.1  Properties of Commenly used Windows :
, Some other types of window functions are as follows :

1) Hamihing window

2) Hanning window

3)  Triangular (Bartlett) window

4)  Blackman window

5) Kaiser window ,
We will consider that the range of each window is from —Q to Q. Here Q is positive integer
number. :
(1) = Hamming window :

Hamming window function is given by,

| 0.54+0.46 cos 21
WH [n] = M-1
m 0 : elesewhere

Fig. J-4 shows shape of Hamming window.

1
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Fig. J-4

Wy [n]is a bell-shaped sequence that is symmetric about n = 0.

(Zj Hanning window function :

Hanning window function is also called as Raised-cosine window. The function is denoted by,

r
1 cos2mn
- Vm =3 [1_ M-1 }

Refer Figs. J-5(a), (b) and (c) to have a look to the spectrum.
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(a) Hanning window sequence (N = 31) , (b) Spectrum
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(¢) Log-magnitude spectrum
Fig. J-5

Magnitude of first side-lobe level is — 31 dB relative to maximum value.

(3)  Triangular window function OR Bartlett window :

Triangular funcﬁon is like tapering the rectangular window sequence linearly from the
middle to the ends. Triangular window function can be given by '

: 2|nl
WT[n] = I—M 1forlnlSle

‘Window and its spectrum is shown in Fig. J-6. -
Sidelobe level is smaller than that of rectangular window.

Triangular window produces smoother magnitude response than that of rectangular window
function. ‘

The transition from passband to stopband is not as steep as that for the: rectangular window.
In the stopband, the response is smoother, but attenuation i$ less than that produced by rectangular
window, therefore because of this characteristic, triangular window is not usually good choice.
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Fig. J-6

" If we compare hanning window with Uiahgﬁlar then hanning window function is smoother at
the ends. Smoother ends reduces sidelobe level, while broaden middle section. ’

(4) Blackman window function :

{h31ﬁ‘(”)}
[

n
K 15
(a) : Window sequence (N = 31)
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(c) Log-magnitude

Fig. J-7 : Blackman window function

In blackman window function, we will find one more additional term in comparision with
hamming and hanning window. Because of additional cosine term, sidelobs are reduced further.



Window fﬁnction for blackman can be given by ,

W, [n] = 042405 cos 22 1008 cos A1
B >N

- Window and its spectrum are shown in Fig. J-7.
(5) Kaiser window function :

Kaiser window function can be defined as,
LB <o
W, [n] = I (o)
0 elsewhere

Where I (x) is modified bessel function of the first kind-and zero order. The tradeoff

/

between main lobe width and side lobe level can be adjusted by varying parameter o.
Here o is independent variable.

B can be expressed as

oV 1-(n/Q)2
fIO(Z\/I—(n/Q)Z’)/IO(Oc) Inl<Q

|

L 0 elsewhere

=z
1]

1]

W, [n]

The spectrum of Kaiser window is as shown in Fig. J-8.
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Fig. J-8 : Kaiser window function



Table J-1. shows the summary of window functions.
Table J-1

054+046—
Wi (0] = M-l

W, [n] = 0.42+0.5cos§-t—51 :

L(B) 'I'nISQ
R LATIER A

0 elsewhere:

1.3.2 Gibb’s Phenomenon :

The impulée response of FIR filter in terms of rectangular window is given by,
h(n):h(n)-W (n) ‘ ' (1)
The frequency response of filter is obtained by taking fourier transform of Equation (1)

& H(w) {h (n) W (n)}

H (m)*W (co) ' ..(2)

ll

L O H(w)

This shows that the frequency response of FIR filter is equal to the convolution of desired
frequency response, H, ( ® ) and the fourier transform of window function.

Now the desired frequency response of low pass FIR is shown in Fig. J-9(a); while the
freauency iusponse of FIR filter obtained because of windowing is shown in Fig. J-9(b).

®
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(a) Desired frek]uency response (b) Frequency response obtained because of Windowing‘
Fig. J-9 '

The ' sidelobes are present in the frequency response of window function. Because of these
sidelobes; the ringing is observed in the frequency response of FIR filter. . This ringing is
predominantly present near the bandedge and it is known as Gibb’s phencmenon.

Now the question arises, why the side lobes are present in the frequency response of
~window function ? This is because of the sudden discontinuities in the window function. Observe
the magnitude response of rectangular window. In this case, the discontinuity is very abrupt.
Therefore ‘the sidelobes are of larger amplitude. Thus the ringing effect is maximum in case of °
rectangular window, - o :

Because of this reason; other window functions are developed which will not have the abrupt
discontinuities. That means the window function will change more gradually in the time domain.

1.3.3 Advantages and Disadvantages of Window Method :

Advantages : _

1. The windowing method requires minimum amount of computational effort; so window
‘ method is simple to implement.

2. For the given window; the maximum amplitude of ripple in the filter response is fixed. Thus .
the stopband attenuation is fixed in the given window.

DiSadvantages :
1. The designing of FIR filters using windows is not flexible.

2. The frequency response of FIR filter shows the convolution of spectrum of window function
and desired frequency response. Because of this; the passband and stopband edge frequencies
cannot be precisely specified.

3. In many applications the expression for the desired filter response will be too complicated.
Design steps for FIR filter : '
1. Get the desired frequency response, Hy ().

Take inverse fourier transform (IFT) of H, () to obtain h, (n).

2
3. Decide the length of FIR filter.

4, Multiply h, (n) by selected window function to get h (n).
5

From h (n) obtain H(Z) and then realize it, if asked.



Solved Problerﬁs :

Prob. 1 : Design a linear phase FIR low pass filter of order seven with cut-off frequency
1 rad/sec using rectangular window.

Soln. :
Step I:  The desired frequency response Hy (®) for the low pass FIR filter is given by,

M-1
[ -jm(—] forlol<lo |
2 c

e
H d( w) = (1)
0 " otherwise
Here M = length of filter = 7 (given) '
e forlol<la |
[ B
H,(0) = : 2
0 otherwise
Step Il :  We will obtain hy(n) by taking IFT of Equation (2). Using the definition of IFT we 7
get,
®
C » .
1 £ J wn
hy(n) = >- | Hy(0)-¢" do .3
-

c

Here given cut-off frequency = o, =-1. Now for the symmetric filter we can write the range

of integration ((1)C ), from o0, == 1to o = 1.
1
i -3jo  jon
h = —— . do
a () 2r J- ¢ e .
: -1
1 .
: 1 jo(n-3)
=-— 1 e dw ..(4
27 J ) @

. 1
p(n-3
1 er(n )
2| j(n-3) ]-

j(n-3) ,—j(ﬂ*3)}
e —¢ -

h (n) = —
a(m) 2m| j(n—-3)
Now we have the trignometric identity,
R L
. e —e
sin@ = —2]—
hy(n) = > (n-3) forn #3 (5

n(n-3) _ _ -



Now if n = 3 then Equation (4) becomes,

1 1
1 0 1 ' 1 1
hy(n) =5 | edo= [ w=str--D1=2 g
-1 -1
sin(n-3)
mn(n—?;) forn#3
Thus we can write, hd(n) = » (7
= forn=3
i

Step HI : Here we have to make use of rectangular window of the order 7. We have for
_ rectangular window,

1 for n=0to6

s W (n) (forn=0to M-1)

0 = otherwise

~_Nowh(n)is, h(n) =h;(n) - W,(n)

Thus using Equation (7) we get,
hd(n) forn=0to 6
h(n) = \ , -(8)
0 otherwise
Equation (8) gives unit impulse response of FIR filter. Making use of Equation (7), we can
obtain the vaiues of hy (n Yand h(n) as shown in the Table J-2.

Table J-2

hy(2)=h(2)=———=

1

':hd"(3) =h(3)===0318
- ) T )

Mol L



134 FIR Filter Design using Kaiser Window

- By using Kaiser window it is possible to obtain seperate control upon length or order (M) of
filter and the transition width of the main lobe.

The magnitude specifications of required FIR filter is as shown in Fig. J-10.

[H()| 4

Passband ripples )
awi

Pas;band Tran‘éition Stop&md
band

Fig. J-10 : Magnitude speciﬁcatiohs

Here 6p = Peak passband deviation

2]
I

Stopband deviation



©, = passband edge frequency

o, = Stopband edge frequency
-0

Af = Transition width = —-Z—n—P—

In Kaiser window there are two main parameters. The length (M + 1) of wi
shape parameter 8. The Kaiser window is defined as,

( 1
2 .
n-o
1- - ) .
o(n) = < IO{B': [ o T:I} fOfOSnS_M

0 otherwise

Here o = % and In( ) is the 0™ order modified bessel function of first kind.

is obtained by using the equation,

025x%  (025x%)% (025x%%)
+ + + ...

fo () =H-(l!)z (21)% (31

Design steps :
Step I :  Choose the optimum value of ripple ‘3’ using the equation,
d = minimum of 8P and 85

Here SP = 1070054

or obtain SP by solving the equation,

G
100054, _

And 8 = —(—
s T 100054, 4

: (1+6PW
Ap = 20log,o| ——
, pJ

OR obtain § by solving the equation,
A, = —20log ()

Step II :  Calculate attenuation ‘A’ in dB using the equation,
A = —2010g10(8)



e

Step III :  Calculate the parameter B from empirical equations proposed by Kaiser as follows :

0.1102(A-8.7) for A > 50
B = <05842(A-21)"4+007886 (A-21) for2i<A< 50
0 ‘ for A <21
Step IV :  The length of filter is M + 1. Then calculate value of M using the equatlon
A-8
2.285 Aw
Here A@ = transition width and is given by,

Ao = 0 -,

Where © = Stopband edge frequency

and ®, = Passband edge frequency.

Step V :  Select the desired impulse response depending on type of filter e.g. low pass, high pass
etc.

Step VI : Calculate the FIR filter coefficients using the relation h (n) = hy(n)-W(n).

Solved problems :

Prob. 1 : Design ‘an FIR linear phase filter using Kaiser window to meet the followmg
specifications

099 < 1H(e”)1 <101, 0<w<0i9x
lH(e )I<001, 021 n<w<r

Soln. : The magnitude specifications of FIR filter are given by,

1-8, < IH((n)IS1+8P ,0so<a,

and O

IA

IH(co)ISZSS v,a)SSan (1)

Comparing Equation (1) with given specifications we get,

1- SP 099 = SP = 0.01

)

S

0.01, o, = 0.19 ® and o = 021mw
Step I:  Optimum value of ripple ‘§’ is,
8 = Minimum of SP and SS

‘ d = 0.01
Step I :  Attenuation ‘A’ is given by,
A = ¥2Olog10(,6) dB



. A

-20 log10 (0.01)dB

& A =40dB

Step III : Here the value of A is 40 dB, that means in the rangé 21 <A <£50. Thus we will
calculate B using the equation,

B = 0.5842(A-21 )04+007886(A 21)
B = 0.5842 (40-21)"4+0.07886 (40-21)
‘ B = 3395
Step IV : The length of filter is M + 1. The value of M is calculated using the equation.
M A-8
2 285 Aw

Here Aw = O -0 —0211t 0.19t=002x

M =208 . omer
2.285 (0.0270)

M = 223 _
Step V :  We have, the desired frequency response for the low pass filter.
i M-1
. 1727 forlel<lol
Hy(0) ={° - 2)
0 otherwise ‘
Remember that Equation (2) is for the filter length M.
For this filter using Kaiser window, the lengm isM+1.
Thus putting M = M + 1 in Equation (2) we get,
_igM
- 7 forloi<lo | -
€ c
H (o) = ‘ (3)
0 otherwise -
Now hy (n) is calculated by taking inverse fourier of Equation (3).
(0 .
© h(n) = = j Hy(0)¢" d | 4
. d(n = o ((D)e (0] . ‘ ..(4)

—-®
c

Here @, = Cutoff frequency. It is obtained by using the equation,




o = 0.19n+0.21n=0-2n
c 2
02w j (223}
1 T jen
hy(n) == [ e ¢ do
-02xw
02n
1 -jo 1115 jon
hd(n) =v% j e -e  do
-02n
02n . S
1 ] +j@o{n-111.5)
hy(n) = - [ e do -(5)
v ~-02=
N [ Jet-s) 02m
By (n) =E['e(n—111—5_)} |
) =) 102 ’
j0.2 - 111.5 -j02 - 111.5
h (n) = —_lm[ej n(n )_7e jo2n(n )]
a 2rj(n—-1115) L
We have the trignometric identity.
9  —jo
. e —e
sin@ = _ZJ—
o b (n) = 2L027(n-ULS)] o s (6)
d n(n-1115)
Now for n = 111.5, using quation (5) we get,
02x ‘
jo(1115-111.5
by (n) = EIE Jo Ddo
-02n
02n 02n
1 o, _ 1
hy(n) = - [ e do = = [ 1de
-02n -027%
: ,
h,(n) =%[O.2n—(—0.2n)]
~ hy(n) =02 for n = 111.5 (7
Now combining Equations (6) and'(7) we can write,
sm[O.ZTt(n—llLS)] forn=111.5
‘hd(n) = n(n—111.5) . (8)
forn=111.5 :

102



Step VI : The filter coefficients are calculated using the equation

h(n) =hd(n)-W(n) : ‘ v ...(9)
[ 2 1/2
: n—-o
1-
We h . (Pl [ o ] }
e have, 0.)(An) = IO(B)
" We have o =%=£§—3—1115
1/2
2
n-111.5
10[3.395{1—(—11—13—J :H
w(n) = 10(3.395) ...(10) -

Thus using Equaﬁons (8) and (10), we can calculate the'required filter coefficients.

1.4 Design of Lmear Phase FIR F|Iters using Frequency Sampllng
Method : .
(1)  The desired frequency response is denoted by H, ().
(2)  This frequency response is sampled uniformly at M points.
(3)  The frequency samples are given by,
o, =%MT£k, k=0,1.... M-1
4) A set of samples determined from Hd () are identified as discrete fourier transform
(DFT) coefficients. 1t is denoted by H.(k ).
There are two types of design as follows :
(A) Typel:

Here frequency samples are :
' 2nk

o = —T/I.—’. k=0,1.... M-1 ..(1)
The sampled desired frequéncy response is denoted by H (k).
and H(k) = H (o) k=0,1 ... M-1
w = (,l)k
. 2k o , .
. H(k) = H; BYE ; k=0,1... M-1 .(2)

The filter coefficient h(n) can be obtained by taking IDFT of H(k).





