Heat Treatment of Metals

MSE-S305

Ankur Katiyar

Assistant Professor, MSME Department UIET, CSJM University

Features of phases present in Fe-Fe₃C Phase Diagram

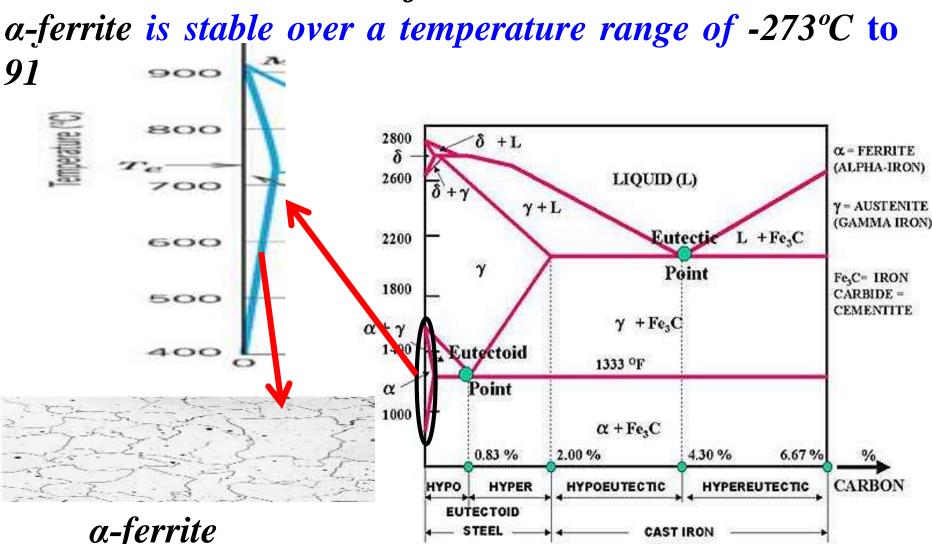
a-ferrite

 $\succ \alpha$ -ferrite is an interstitial solid solution of *carbon* dissolved in α - iron (BCC).

Maximum solubility of carbon in α-iron is 0.025%C at 723°C and it dissolves only 0.008%C at room temperature.

▶It is the softest structure (fairly ductile) that appears on the Fe-Fe₃C phase diagram.

>It is a stable form of iron at room temperature.


Features of phases present in Fe-Fe3CPhase Diagramα-ferrite

 $\triangleright \alpha$ -ferrite transforms to γ -austenite(FCC) at 912°C.

 $> \alpha$ -ferrite is ferromagnetic at room temperature and it becomes non-magnetic (paramagnetic) at curie temperature (768°C).

Features of phases present in Fe-Fe₃C **Phase Diagram**

a-ferrite

CAST IRON

Features of phases present in Fe-Fe₃C Phase Diagram

y-austenite

 $\succ \gamma$ -austenite is an interstitial solid solution of carbon dissolved in γ -iron (FCC).

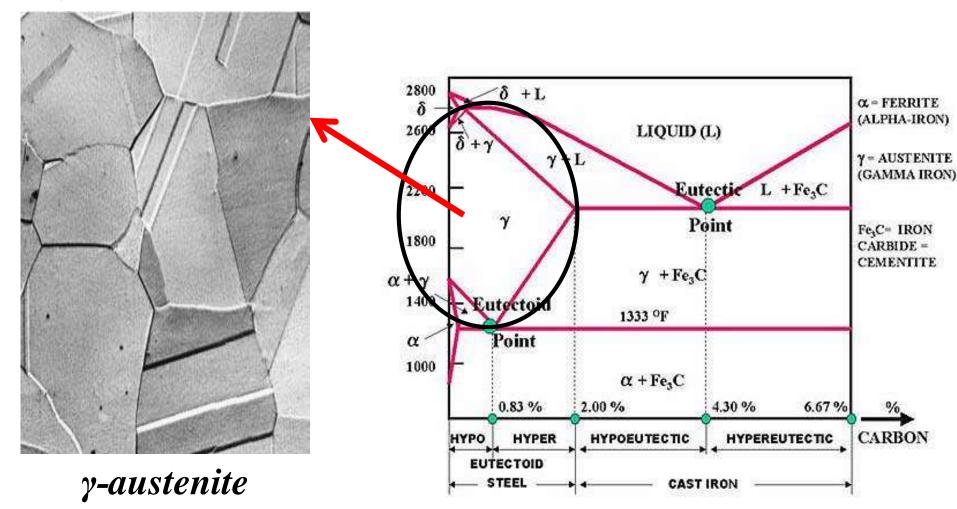
Maximum solubility of carbon in γ-iron is 2.1%C at 1147°C.

Austenite is *soft*, *ductile* **and** *malleable*.

>Austenite is non magnetic (paramagnetic).

Features of phases present in Fe-Fe₃CPhase Diagramγ-austenite

 $\succ \gamma$ -austenite(FCC) transforms to δ -ferrite(BCC) at 1395°C.


Steels are commonly *rolled* and *forged* above about 1100°C, when they are in austenite state due to its high ductility and malleability, which is also due to its FCC crystal structure.

Features of phases present in Fe-Fe₃C

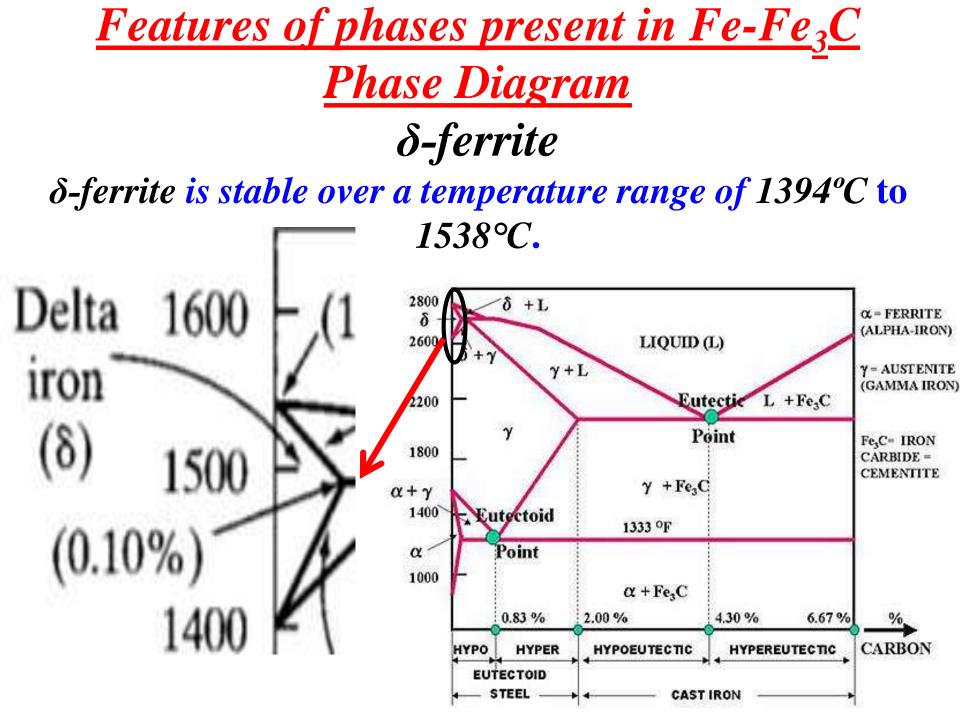
Phase Diagram

y-austenite

γ-austenite is stable over a temperature range of 912°C.

Features of phases present in Fe-Fe3CPhase Diagramδ-ferrite

 $\succ \delta$ -ferrite is an interstitial solid solution of carbon dissolved in δ -ferrite(BCC).


Maximum solubility of carbon in δ -iron is 0.09%C at 1495°C.

 $\succ \delta$ -ferrite is a high temperature phase and is a high temperature presentation of α -ferrite.

 $\succ \delta$ -ferrite is non magnetic (paramagnetic).

Features of phases present in Fe-Fe₃CPhase Diagram δ -ferrite

 $>\delta$ -ferrite is not stable at room temperature in plain carbon steel. However it can be present at room temperature in alloy steel specially in duplex stainless steel.

Features of phases present in Fe-Fe₃C Phase Diagram *Cementite (Fe₃C)* ≻*Cementite (iron carbide)*, chemical formula *Fe₃C*, **contains** 6.67%C by weight and it is metastable phase at room temperature.

 \succ *Cementite* (*Fe*₃*C*) is an intermetallic compound.

➢It is typically hard and brittle interstitial compound of low tensile strength but high compressive strength and high hardness. **Features of phases present in Fe-Fe₃C Phase Diagram** *Cementite (Fe₃C)*

➢Iron carbide is the hardest structure that appears on the Fe-Fe₃C phase diagram.

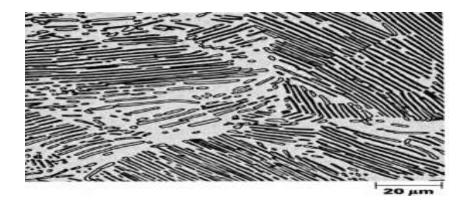
► It is slightly ferromagnetic up to 210°C and paramagnetic above it.

 \succ Cementite (Fe₃C) has a complex orthorhombic crystal structure with 12 iron atoms and 4 carbon atoms per unit cell.

Features of phases present in Fe-Fe₃C

Phase Diagram

Cementite (Fe_3C) Cementite (Fe_3C) is a metastable phase at room temperature but the decomposition rate of cementite is small and included in a phase diagram. Hence, we typically consider the Fe-Fe₃C part of the Fe-C phase diagram.


Cementite (Fe_3C) decomposes (very slowly, within several years) into α -Fe and C (graphite) at 650 - 700°C.

Melting point of Cementite (Fe_3C) is around 1227°C.

Features of phases present in Fe-Fe₃C Phase Diagram *Pearlite* $(\alpha + Fe_3C)$

→ Pearlite (α +Fe₃C) is an alternate layered
 structure of two phases: α -ferrite and cementite
 (Fe3C).

≻Pearlite (α +*Fe*₃*C*) is very fine *plate like* or *lamellar* mixture of ferrite and cementite.

Features of phases present in Fe-Fe₃C

Phase Diagram

Pearlite (α +Fe₃C)

≻Pearlite (α +*Fe*₃*C*) is the eutectoid mixture containing 0.80 %*C* and is formed at 723°*C* on very slow cooling.

> The weight fraction of these two phases (α -ferrite and cementite) are thus in the ratio of 8:1.

Features of phases present in Fe-Fe₃C Phase Diagram *Ledeburite* (γ+ *Fe*₃*C*) ≻Ledeburite (γ+ *Fe*₃*C*) is the eutectic mixture of

austenite (γ -ferrite) and cementite (Fe₃C).

 \succ Ledeburite (γ + Fe₃C) contains 4.3%C and is formed at 1147°C.

Structure of ledeburite contains small islands of austenite (y-ferrite) are dispersed in the carbide phase.

>Ledeburite is not stable at room temperature.

 Features of phases present in Fe-Fe₃C

 Phase Diagram

 Ledeburite (γ+ Fe₃C)

 > Ledeburite is not a type of steel as the carbon

 level is too high.

➤Ledeburite may occur as a separate constituent in some high carbon steels.