
Recent Advances in Formulation & Evaluation Of GRDDS

LIST OF CONTENTS

INTRODUCTION to GRRDS
 GRDDS TECHNOLOGIES
 EVALUATION OF GRDDS - In vitro
 EVALUATION OF GRDDS - In vivo

Introduction to GRDDS

Physiological limitations of orally administered drugs:

• Variable gastric emptying time (GET)

Short Gastric residence time (GRT)

 Incomplete drug release due to brief gastrointestinal transit time (8-12 h)

DRUGS WHICH REQUIRE GRDDS

[A] NARROW ABSORPTION WINDOWNarrow absorption windowLevodopa/ Riboflavin

Narrow absorption window at upper part of GIT

SR

Absorption Window

Rationale for GR

<u>Name of drug</u>

- pH-dependant absorption Furosemide
 from stomach (acidic drugs)
- Degradation at higher pH Captopril (higher stability at lower pH)
- Degradation in intestine or colon Ranitidine
- Higher solubility at lower pH Cinnarizine / or weakly basic drugs Verapamil
- Drugs for local action

Antacids, anti-ulcers antibacterials for H. pylori

Gastro-Retentive Drug Delivery Systems(GRDDS)

Drug delivery systems that remain for prolonged time in the gastrointestinal tract

Advantages of GRDDS

- Prolongation and control of gastric emptying time
- Drugs present at absorption site for longer time
- Improved bioavailability
- Reduced drug wastage

Limitations of GRDDS

- Fed and Fasted States
- Intake of type of meal
- High level of fluids in stomach
- Unsuitable for drugs absorbed along entire GI tract e.g. nifedipine
- Drugs irritant to the gastric mucosa

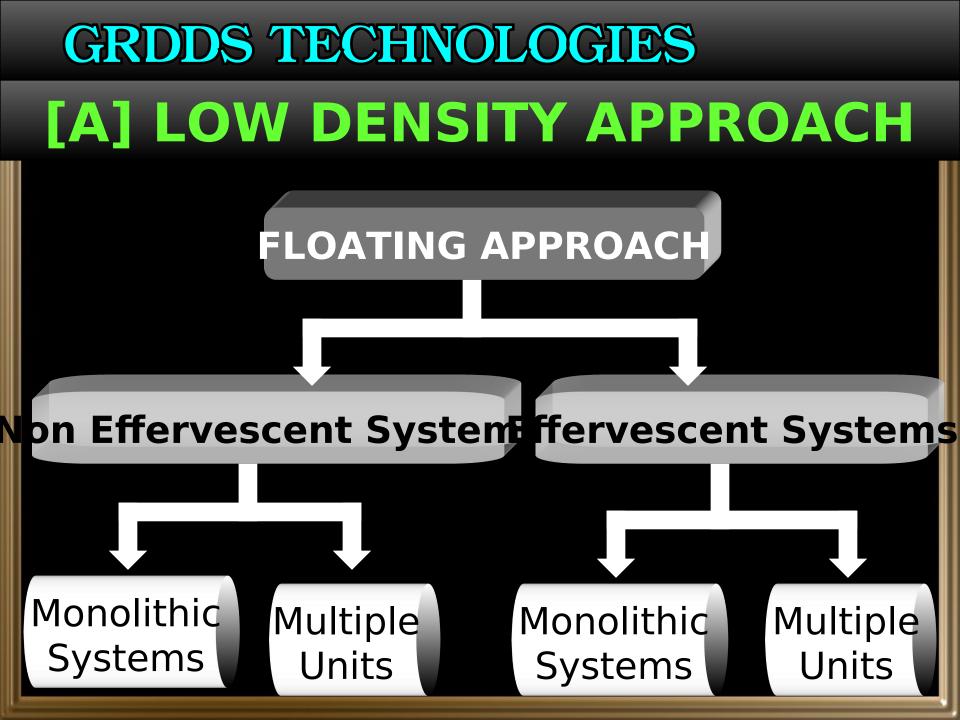
GI characteristics in humans

- Volume of stomach
- Gastric pH in fasting state
- Duodenal diameter
- Small intestinal transit time
- Total git transit time
- Size which does not empty from stomach

- 1500 ml
- 2
- 3-4 cm
- 180+60min
- 20-30 h
- Longer than
 5 or larger
 than 3 cm

GRDDS TECHNOLOGIES

[A] Low Density Approach


[B] Expandable Approach

[C] Bio/Muco-adhesive Approach

[D] High Density Approach

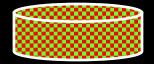
Floating Systems/Low-Density Systems/Hydrodynamically Balanced Systems

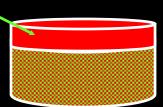
- Bulk Density of dosage forms lower than gastric fluids, remain floating in gastric fluid
- Controlled Release of drug from the system
- Increase in gastric retention time

MONOLITHIC SYSTEMS

HBSTM CAPSULE

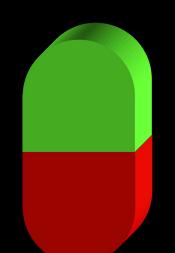
DRUG

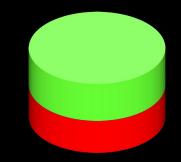

- HPMC
- HPC
- HEC
- MC


MONOLITHIC SYSTEMS

MATRIX TABLET

Single Layer Tablet Bilayer Tablet


Loading Dose



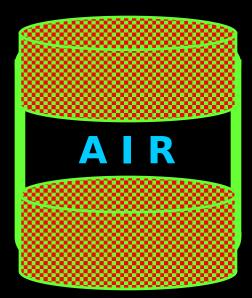
MONOLITHIC SYSTEMS

NON MATRIX BILAYER SYSTEM BILAYER CAPSULE BILAYER TABLET

MONOLITHIC SYSTEMS

- **TABLET with FOAMTABLET with LIPID**
- Polypropylene Foam
- Hydrophobic Powder
- Open-cell Structure
- Highly Porous
- Low Inherent Density

Glyceryl Monooleate

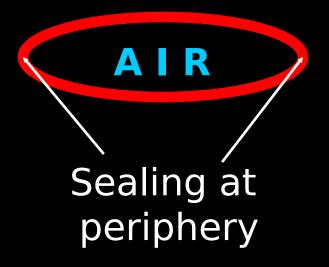

- Swells in Water
- Converted to Liquid **Crystals - Cubic** Shape

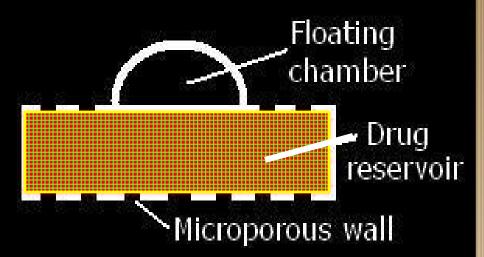
Melted And Molded

MONOLITHIC SYSTEMS

TABLETS IN CYLINDER

COATED HOLLOW GLOBULAR SHELL

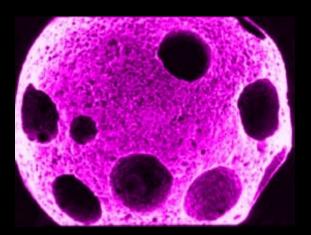




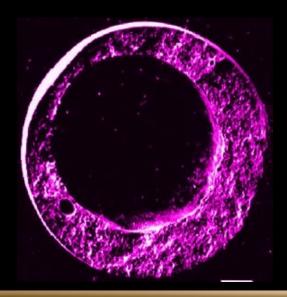
MONOLITHIC SYSTEMS

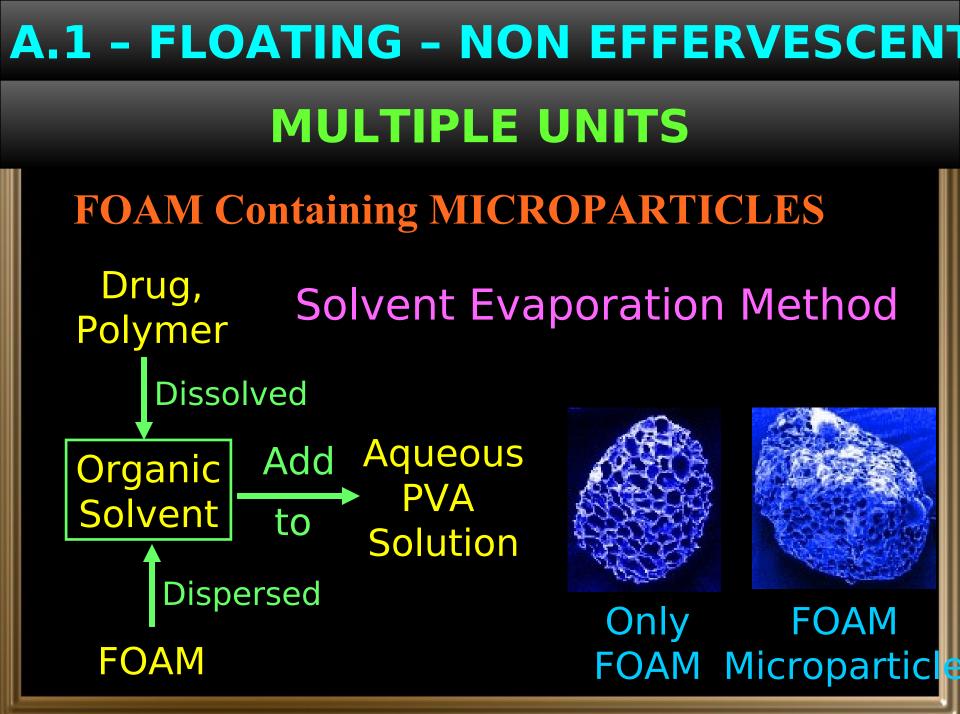
MULTILAYER FILM

MICROPOROUS RESERVIOR



MULTIPLE UNITS


HOLLOW MICROSPHERE


Solvent Evaporation

MICROBALLOON

Emulsion Solvent Diffusion Method

MULTIPLE UNITS

CALCIUM SILICATE As FLOATING CARRIER

GELUCIRE® GRANULES

- Highly Porous
- Large Pore Volume
- Low Inherent Density

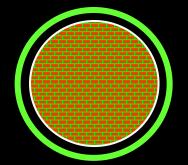
GranulesDrug HPMC Ca-Silicate

- Hydrophobic Lipid
- Diff. Grades 39/01 43/01
- Low Inherent Density
- Melt Granulation
- SR of Highly Soluble Dr

MONOLITHIC SYSTEM

MATRIX TABLET

- Sicarbonate +
 Polymer
- Single Layer Tablet
- Silayer Tablet
- Triple Layer Tablet


- MATRIX TABLET with CARBOPOL
- pH dependent Gelling
- Only CarbopolNO GELLING
- Bicarbonate + Carbopol - GELLING due to Alkaline

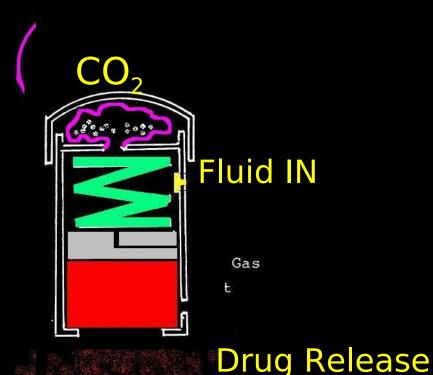
MICROENVIRONMENT

MONOLITHIC SYSTEM

COATED EFFERVESCENT CORE

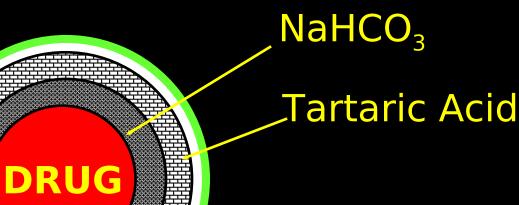
EFFERVESCENT MULTIPLE FILM

MONOLITHIC SYSTEM


PROGRAMMABLE DRUG DELIVERY

SYSTEM with INFLATABLE CHAMBER

Volatile


Liquid

Chamber

MULTIPLE UNITS

FLOATING PILLS

Swellable Polymer

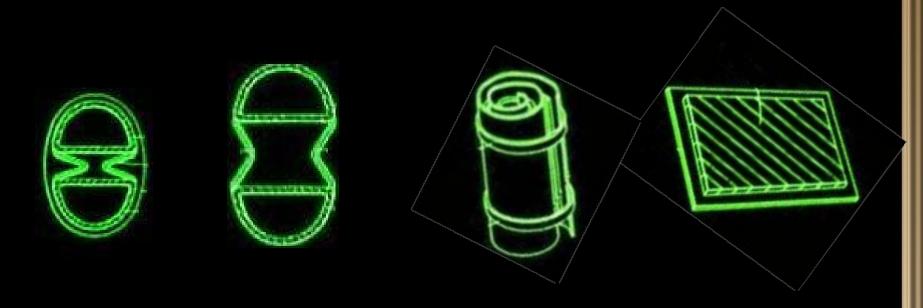
A.2 – FLOATING – EFFERVESCENT **MULTIPLE UNITS ION EXCHANGE RESIN BEADS** H⁺ Cl H+ C HCO₃ HCO H+ CI Resir HCO H+ C H+ C Uncoated Beads – No Floating – Escape of CO₂

GRDDS TECHNOLOGIES [B] EXPANDABLE APPROACH

EXPANDABLE

- After ingestion they swell to an extent that their exit is prevented from the stomach.
- Dosage form retained for prolonged time due to Retropulsion
- PLUG TYPE devices

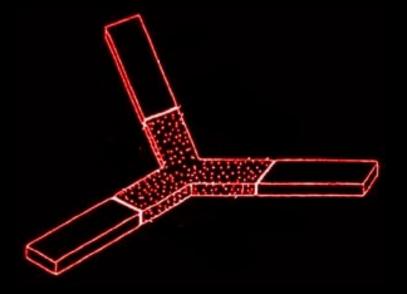
GRDDS TECHNOLOGIES [B] EXPANDABLE APPROACH EXPANDABLE APPROACH nfolding Systems welling Systems



SHAPE MEMORY

[B] - EXPANDABLE APPROACH B.2 - UNFOLDING SYSTEMS

OBSTRUCTING MEANS


MULTILAYER FILMS

[B] - EXPANDABLE APPROACH B.2 - UNFOLDING SYSTEMS

GEOMETRIC CONFIGURATIONS

RECEPTACLE MEANS

Bioadhesive Systems

- Localize the dosage form within the stomach by using principle of bioadhesion
- Use of bioadhesive polymers that adhere to the epithelial surface of git
- Prolonged drug release and increased gastric retention

GRDDS TECHNOLOGIES [C] BIO/MUCO ADHESIVE APPROACH

ST.

High Density Systems

 Dosage forms coated with inert heavy metals such as ZnO₂/BaSO₄ having density greater than stomach contents (~ 1.004 g/cm2)

EVALUATION OF GRDDS

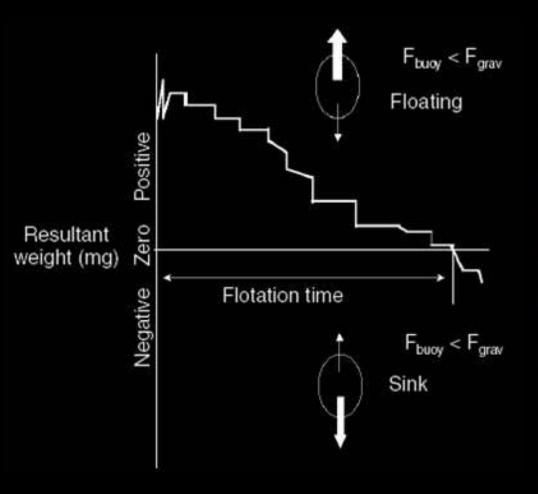
IN VITRO

FLOATING DOSAGE FORMS Floating Lag Time

- In 0.1 N HCl or Simulated Gastric Fluid
- Important for Effervescent Systems For reaction
- Negligible for non-effervescent of hollow microspheres/ microballons
- Housekeeper waves of the stomach may sweep out the dosage form.

Specific Gravity /

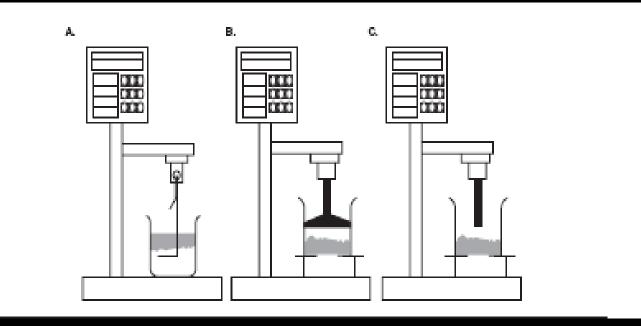
Density ortant to predict floatibility


- Ratio of tablet weight to tablet volume (height & diameter)
- For multiple units mass volume of known mass weight

Floating Time / Buoyancy Time

- Total time period between placing a dosage form in the medium to the time it remains floating
- Indicates duration of GR
- For multiple units, Fraction of microspheres settled down as a function of time by determining its weight on drying

Resultant Weight


- Total time period between placing a dosage form in the medium to the time it remains floating
- Indicates duration of GR

Raft Characterization

Raft Strength

Raft Resistance to Reflux

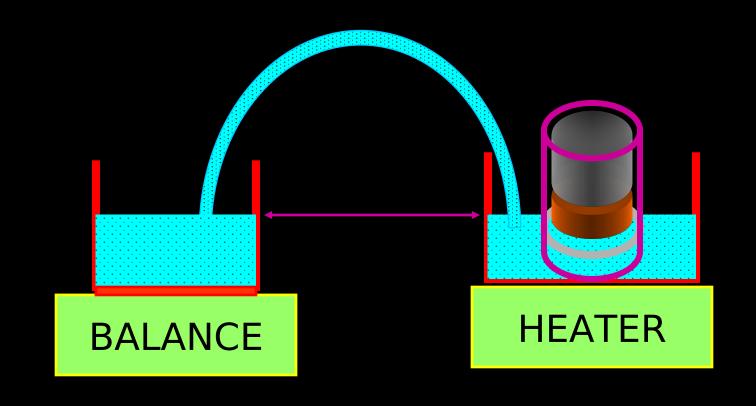
Reproduced from : A review by

Parikh & Amin in Expert Opinion On Drug Delivery (2008), 5(9), 1-15

EVALUATION OF GRDDS IN VITRO EVALUATION SWELLING SYSTEM

Swelling Index / Water Uptake / Weight Gain Swelling Capacity of the polymer in contact with the dissolution medium

WU = (Wt - Wo) * 100 / Wo


Important for GRDDS based on Swelling approach.

Also indicative of release properties

EVALUATION OF GRDDS

IN VITRO EVALUATION

SWELLING SYSTEM

EVALUATION OF GRDDS

IN VITRO EVALUATION

Penetration Rate

Water uptake test for Swellable dosage forms

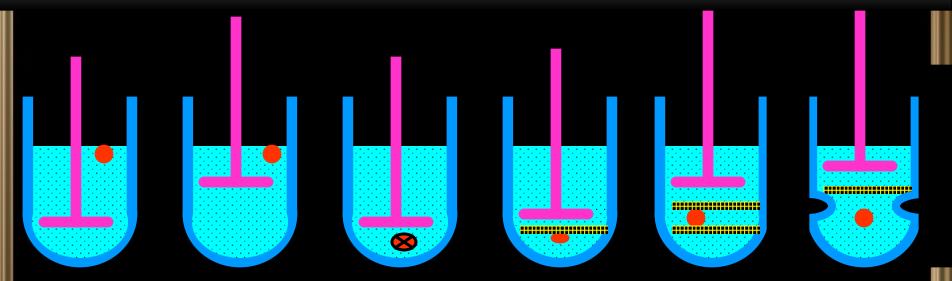
Requires removal of dosage form from the media. Leads to rupture of the matrix

PR = Water Uptake $\frac{2 \pi r^2}{Per Unit Time Water Density}$

New method: Weight determination at regular time intervals

Exposed Size Parameter

Test specifically for unfolding type of systems. Placed in a capsule. Suspended in dissolution medium Unfolding Capacity ascertained


In-vitro Drug Release

- Release Profile in SGF / 0.1 N HCI
- Use of USP Dissolution Apparatus I or II
- Use of Enzymes and surfactants required
- Position of Floating Type very Critical
 Use of Sinkers

EVALUATION OF GRDDS

HEATER

IN VITRO DISSOLUTION

EVALUATION OF GRDDS

1. Roentgenography O

2. γ-SCINTIGRAPHY

3. GASTROSCOPY

4. MAGNETIC MARKER MONITORING

5. ULTRASONOGRAPHY

6. ¹³C OCTANOIC ACID BREATH TEST

Platform technologies for GRDDS

<u>Company</u> <u>Platform technology</u> <u>Type of technology</u> Depomed AcuForm **Polymer-based** technology Intec Accordion Pill Expandable film, filled in capsule Sun Gastro Retentive Coated multilayer Pharma Innovative Device floating and swelling system

- Merrion GI Retention Gas generating
 Pharma System (GIRES) inflatable pouch in capsule
- FlamelMicropump

Gastro-retention with osmotic system

 Roche Hydrodynamically Matrix forming Balanced System polymer-based floating

system

MARKETTED PRODUCTS

Brand Name	Drug (dose)	Company
Madopar®	Levodopa (100 mg), Benserazide (25 mg)	Roche, USA
Valrelease®	Diazepam (15 mg)	Hoffman LaRoche, USA
Liquid Gaviscon®	$AI(OH)_3 + MgCO_3$	GlaxoSmithKlein, India
Topalkan [®] Liquid	Al – Mg antacid	Pierre Fabre Drug, France
Almagate Flotcoat®	Al – Mg antacid	
Conviron®	Ferrous sulfate	Ranbaxy, India
Cifran OD®	Ciprofloxacin (1 g)	Ranbaxy, India
Cytotec®	Misoprostal (100/200 µg)	Pharmacia, USA