
Nanocrystalline Solids

I. Glass:

Structure of Silica:

Silicate Structural Units:

Number of oxygen ions shared	Structural unit	Structural formula	Charge balance	Examples of mineral
0		Island (SiO ₄) ⁴ (ortho)	Si +4 O -8 Net -4	Olivine (Mg , Fe) ₂ SiO ₄
1		Island (Si ₂ O ₇) ⁶⁻ (pyro)	Si +8 O -14 Net -6	Hemimorphite Zn ₄ Si ₂ O(OH) ₂ .H ₂ O
2	-	Single (SiO ₃) ²⁻ chain Ring (SiO ₃) ²⁻	Si +4 O -6 Net -2 Si +4 O -6 Net -2	Enstatite MgSiO ₃ Beryl Be ₃ AI ₂ (SiO ₃) ₆
21/2		Double (Si ₄ O ₁₁) ⁶⁻	Si +16 O -22 Net -6	Tremolite (Asbestos)Ca ₂ Mg ₅ (OH) ₂ .(Si ₄ O ₁₁) ₂

3		Sheet $(Si_2O_5)^{2-}$	Si +8 O -10 Net -2	Muscovite (Mica) KAl ₂ (OH) ₂ . (Si ₃ Al)O ₁₀
4	Three- dimensional network	(SiO ₂) ⁰	Si +4 O -4 Net 0	Quartz SiO ₂

Glass-ceramics Composition

- Pyrex
- -80% SiO₂, 14% B₂O₃, 4% Na₂O
- Fused Silica
- 99.8% SiO₂

Tsoft (Pyrex) < Tsoft (Fused Silica)

- Portland Cement
- $-C_3S:45\%$
- $-C_2S: 30\%$
- $-C_3A: 10\%$
- C₄AF: 8%
- Others (Binders): 7%

POLYMERS: THERMOPLASTICS VS THERMOSETS

II.

• Thermoplastics:

- 1. little cross linking
- 2. ductile
- 3. soften w/heating
- 4. polyethylene
- 5. polypropylene
- 6. polycarbonate
- 7. polystyrene

• Thermosets:

- 1. large cross linking
- 2. (10 to 50% of monomers)
- 3. hard and bridle
- 4. do NOT soften w/heating
- 5. vulcanized rubber, epoxies, polyester resin, phenolic resin, bakelite

Long Chain Polymers

• Plastics– Random orientation of long chain molecules

- Fibers- Alignment of chains
- Elastomers- Long chain molecules with rubbery behavior

Name	Monomer Structure			<u>cture</u>	Uses	
	R1	R2	R3	R4		
Polyethylene (Polythene)	Н	Н	Н	Н	Sheets, tubes and containers	
Polyvinyl chloride (PVC)	Н	Н	Н	CI	Electrical insulation, gramophone recorders	
Polypropylene	H	Н	Н	CH ₃	Ropes and filaments, vacuum flask, flash lig casing Transparent windows and fixture	
Polymethylemethacrylate (Plexiglass)	Н	Н	CH ₃	COOCH ₃		
Polystyrene	Н	Н	Н	C ₆ H ₅	As Styrofoam, sound proofing in refrigerators and buildings	

REFESRENCE

- Book: Materials Science and Engineering: A First Course by V. Raghavan; Prentice-Hall of India Private Limited, 1989
- Book: Materials Science and Engineering: An Introduction by William D. Callister, John Wiley & Sons, 1997.