Solvent Extraction

Contents

- Introduction
- Eduleanu Process
 - Description
 - Flowsheet
- Udex Process
 - Description
 - Flowsheet
 - Operating conditions and yield Pattern
- Hydrotreating

Introduction

- Secondary Refining Processes
 Finishing or treating
 Processes.
- Types of Secondary Refining Processes
 - Hydrogen Sulphide
 removal Processes
 - Sulphur recovery Processes
 - Sweetening Processes
 - Solvent Extraction •
 Processes
 - Hydrotreating Processes.

- Solvent Extraction is used in thepetroleumrefiningpetrochemical industries since 1920
- In the petroleum industry extraction processes are widely used in two areas :
 - (i) In the production of light aromatics
 - (ii) In the de-aromatisation of lube fractions for improving the quality of base oils.
- The main criteria in the selection of the solvents are their physicochemical characteristics such as solvent power (solubility of aromatics in the solvent) and

Edeleanu Process

- This process is the oldest liquid- liquid extraction process used in petroleum industry.
- This was initially and successfully used in the refining of kerosene, gas oil and light petroleum fractions.
- It uses liquid Sulphur dioxide as solvent. At normal boiling point of SO₂ of -10°C aromatic and unsaturated hydrocarbon are completely miscible with SO₂ but paraffinic and naphthenic hydrocarbon are not.
- The solvent capacity of liquid SO₂ was increased by adding benzene in small amounts and used for processing of more paraffinic feeds.
- Because of the high solvent losses, toxic nature of the solvent and corrosion of process equipment, Edeleanu process is no longer in use.

Edeleanu process for treating kerosine

Udex process

- Udex process is developed by Universal Oil Product.
- It uses concentrated aqueous solution of di-or tri-ethylene glycol.
- This process is used for the extraction of benzene, toluene, ethyl benzene, xylene and heavy aromatic compounds.

Process flow sheet of Udex process

Typical operating conditions

Extractor pressure(top), kgf/cm ²	8.4
Extractor temperature, °C	143
Solvent to Feed ratio (vol./vol.)	4.7
Solvent Composition	
(a) % of triethylene glycol	92
(b) % of water	8

Typical yield pattern

	Yield
Benzene	38
Toluene	14
Raffinate	47
C ₈ bottom + loss	1

Hydrotreating Processes

- Application of Hydrotreating
 - 1. Reduction of Sulphur in the feed to the catalytic reformer.
 - 2. Desulphurization of naphtha , kerosine, gas oil and fuel oil.
 - 3. Improvement of colour, odour, oxidation stability of lubricating oil base stock and waxes.
 - 4. Mild hydrogenation of aromatics into napthenes in stream like high aromatics kerosine and gas oils to improve smoke point and cetane number.
 - 5. Hydrogenation of olefinic streams produced from thermal cracking process.

<u>Hydrotreating process for Distillate</u> <u>desulphurization</u>

- Feedstock along with recycle hydrogen-rich gas stream is preheated.
- Mixture is passed to a fix bed reactor.
- The reactor effluents after cooling go to high pressure separator where hydrogen rich gases are separated and recyle back to the reactor .
- The liquid product from high pressure separator goes to low pressure separator where light gases are stripped off.
- The liquid product from the low pressure separator is stabilized in a stabilizer.

<u>Catalyst</u> Co-Mo, Ni-Co-Mo

Hydrotreating Reaction

These include desulphurization, denitrogenation, deoxygenation, olefin saturation $\begin{array}{c} RSH + H_2 & \longrightarrow RH + H_2S\\ R_1SR_2 + 2H_2 & \longrightarrow R_1H + R_2H + H_2S\\ R_1SSR_2 + 3H_2 & \longrightarrow R_1H + R_2H + 2H_2S\\ \end{array}$

$$+ 5H_2 \longrightarrow CH_3CH_2CH_2CH_2CH_3 + NH_3$$

Deoxygenation.

Olefin saturation. $CH_3CH_2CH_2CH_2CH_2 CH = CH_2 + H_2 \longrightarrow CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2$

Flow sheet for Hydrotreating Process

Typical operating condition

Pressure (separator drum)	40
Space velocity, m ³ /h	2.1
Recycle gas rate Nm ³ pure H ₂ /m3 of liquid feed	200

Thank You