Law of mechanics

- Newton's first law
- Newton's second law
- Newton's third law
- Law of parallelogram
- Principle of Transmissibility.

PARALLELOGRAM LAW OF FORCES

- It states, "If two forces, acting simultaneously on a particle, be represented in magnitude and direction by the two adjacent sides of a parallelogram ; their resultant may be represented in magnitude and direction by the diagonal of the parallelogram, which passes through their point of intersection."

Conti...

Mathematically, resultant force,

$$
\begin{aligned}
& R=\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos \theta} \\
& \text { and } \quad \tan \alpha=\frac{F_{2} \sin \theta}{F_{1}+F_{2} \cos \theta} \\
& \text { where } \\
& F_{1} \text { and } F_{2}=\text { Forces whose resultant is required to be found out, } \\
& \theta=\text { Angle between the forces } F_{1} \text { and } F_{2} \text {, and } \\
& \alpha=\text { Angle which the resultant force makes with one of the forces (say } F_{1} \text {). }
\end{aligned}
$$

Questions..

Q. Two forces of 100 N and 150 N are acting simultaneously at a point. What is the resultant of these two forces, if the angle between them is 45° ?
Q. Find the magnitude of the two forces, such that if they act at right angles, their resultant is 10 N . But if they Act at 60°, their resultant is 13 N .
Q. Two forces of 100 N and 150 N are acting simultaneously at a point. What is the resultant of these two forces, if the angle between them is 45° ?

Given : First force (F1) = 100 N ; Second force $(F 2)=150 \mathrm{~N}$ and angle between $F 1$ and $F 2$ (q) $=45^{\circ}$.
We know that the resultant force

$$
\begin{aligned}
R & =\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos \theta} \\
& =\sqrt{(100)^{2}+(150)^{2}+2 \times 100 \times 150 \cos 45^{\circ}} \mathrm{N} \\
& =\sqrt{10000+22500+(30000 \times 0.707)} \mathrm{N} \\
& =232 \mathrm{~N} \quad \text { Ans. }
\end{aligned}
$$

Q. Find the magnitude of the two forces, such that if they act at right angles, their resultant is V 10 N . But if they Act at 60°, their resultant is V 13 N .

Solution. Given : Two forces $=F_{1}$ and F_{2}.
First of all, consider the two forces acting at right angles. We know that when the angle between the two given forces is 90°, then the resultant force (R)
or

$$
\begin{aligned}
& \sqrt{10}=\sqrt{F_{1}^{2}+F_{2}^{2}} \\
& 10=F_{1}^{2}+F_{2}^{2}
\end{aligned}
$$

Similarly, when the angle between the two forces is 60°, then the resultant force (R)

$$
\begin{array}{ll}
& \sqrt{13}=\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos 60^{\circ}} \\
\therefore & 13=F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \times 0.5
\end{array}
$$

...(Squaring both sides)
or

$$
F_{1} F_{2}=13-10=3 \quad \ldots\left(\text { Substituting } F_{1}^{2}+F_{2}^{2}=10\right)
$$

Conti..

We know that $\left(F_{1}+F_{2]}\right)^{2}=F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2}=10+6=16$

$$
\begin{equation*}
\therefore \quad F_{1}+F_{2}=\sqrt{16}=4 \tag{i}
\end{equation*}
$$

Similarly $\quad\left(F_{1}-F_{2}\right)^{2}=F_{1}^{2}+F_{2}^{2}-2 F_{1} F_{2}=10-6=4$

$$
\begin{equation*}
\therefore \quad F_{1}-F_{2}=\sqrt{4}=2 \tag{ii}
\end{equation*}
$$

Solving equations (i) and (ii),

$$
F_{1}=3 \mathrm{~N} \quad \text { and } \quad F_{2}=1 \mathrm{~N} \text { Ans. }
$$

