Lecture 6

Engineering Mechanics

Q. An electric light fixture weighting 15 N hangs from a point C , by two strings AC and $B C$. The string $A C$ is inclined at 60° to the horizontal and $B C$ at 45° to the horizontal as shown in Fig. Using Lami's theorem, or otherwise, determine the forces in the strings $A C$ and $B C$.

SOLUTION:

$$
\text { Let } \quad \begin{aligned}
& T_{A C}=\text { Force in the string } A C, \text { and } \\
& T_{B C}=\text { Force in the string } B C .
\end{aligned}
$$

The system of forces is shown in Fig. 5.4. From the geometry of the figure, we find that angle between $T_{A C}$ and 15 N is 150° and angle between $T_{B C}$ and 15 N is 135°.

$$
\therefore \quad \angle A C B=180^{\circ}-\left(45^{\circ}+60^{\circ}\right)=75^{\circ}
$$

Applying Lami's equation at C,

$$
\begin{aligned}
& \frac{15}{\sin 75^{\circ}}=\frac{T_{A C}}{\sin 135^{\circ}}=\frac{T_{B C}}{\sin 150^{\circ}} \\
& \text { or } \quad \frac{15}{\sin 75^{\circ}}=\frac{T_{A C}}{\sin 45^{\circ}}=\frac{T_{B C}}{\sin 30^{\circ}} \\
& \therefore \quad T_{A C}=\frac{15 \sin 45^{\circ}}{\sin 75^{\circ}}=\frac{15 \times 0.707}{0.9659}=10.98 \mathrm{~N} \text { Ans. }
\end{aligned}
$$

Fig. 5.4.

TUTORIAL

Problem 1.11. Three forces of magnitude $40 \mathrm{kN}, 15 \mathrm{kN}$ and 20 kN are acting at a point 0 as shown in Fig. 1.17. The angles made by $40 \mathrm{kN}, 15 \mathrm{kN}$ and 20 kN forces with X-axis are $60^{\circ}, 120^{\circ}$ and $2+40^{\circ}$ respectively. Determine the magnitude and direction of the resultant force.

A string ABCD, attached to fixed points A and D has two equal weights of 1000 N attached to it at B and C. The weights rest with the portions $A B$ and $C D$ inclined at angles as shown in Fig. A string ABCD, attached to fixed points A and D has two equal weights of 1000 N attached to it at B and C. The weights rest with the portions $A B$ and CD inclined at angles as shown in Fig.

SOLUTION:

For the sake of convenience, let us split up the string $A B C D$ into two parts. The system of forces at joints B and is shown in Fig. 5.6 (a) and (b).

Fig. 5.6.
Let $\quad T_{A B}=$ Tension in the portion $A B$ of the string, $T_{B C}=$ Tension in the portion $B C$ of the string, and $T_{C D}=$ Tension in the portion $C D$ of the string.
Applying Lami's equation at joint B,
and

$$
\begin{array}{rlrl}
& \begin{array}{l}
T_{A B} \\
\sin 60^{\circ}
\end{array}=\frac{T_{B C}}{\sin 150^{\circ}}=\frac{1000}{\sin 150^{\circ}} \\
\frac{T_{A B}}{\sin 60^{\circ}}=\frac{T_{B C}}{\sin 30^{\circ}}=\frac{1000}{\sin 30^{\circ}} \\
\therefore \quad T_{A B} & =\frac{1000 \sin 60^{\circ}}{\sin 30^{\circ}}=\frac{1000 \times 0.866}{0.5}=1732 \mathrm{~N} \text { Ans. } \\
& T_{B C}=\frac{1000 \sin 30^{\circ}}{\sin 30^{\circ}}=1000 \mathrm{~N} \quad \text { Ans. }
\end{array}
$$

