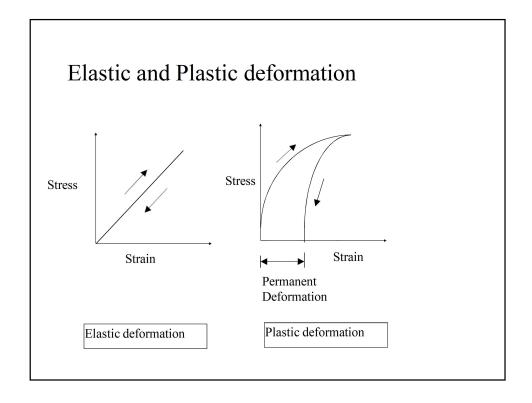


Shear Stress and Shear Strain Contd.



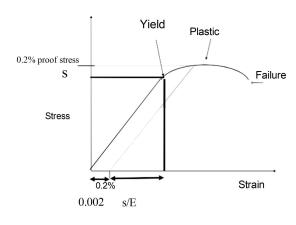
Shear strain is the distortion produced by shear stress on an element or rectangular block as above. The shear strain, γ (gamma) is given as:

$$\gamma = x/L = \tan \phi$$

Shear Stress and Shear Strain Concluded

- For small ϕ $\gamma = \phi$
- Shear strain then becomes the change in the right angle.
- It is dimensionless and is measured in radians.

Modulus of Elasticity


If the strain is "elastic" Hooke's law may be used to define

Youngs Modulus
$$E = \frac{Stress}{Strain} = \frac{W}{x} \times \frac{L}{A}$$

Young's modulus is also called the modulus of elasticity or stiffness and is a measure of how much strain occurs due to a given stress. Because strain is dimensionless Young's modulus has the units of stress or pressure

How to calculate deflection if the proof stress is applied and then partially removed.

If a sample is loaded up to the 0.2% proof stress and then unloaded to a stress s the strain x = 0.2% + s/E where E is the Young's modulus

Volumetric Strain

- Hydrostatic stress refers to tensile or compressive stress in all dimensions within or external to a body.
- Hydrostatic stress results in change in volume of the material.
- Consider a cube with sides x, y, z. Let dx, dy, and dz represent increase in length in all directions.
- i.e. new volume = (x + dx) (y + dy) (z + dz)

Volumetric Strain Contd.

Neglecting products of small quantities:

New volume = x y z + z y dx + x z dy + x y dz

Original volume = x y z

$$= z y dx + x z dy + x y dz$$

Volumetric strain, $\Delta V = \underline{z} \underline{y} dx + \underline{x} \underline{z} dy + \underline{x} \underline{y} d\underline{z}$

$$\mathcal{E}_{v} \times y z$$

$$\varepsilon_v = dx/x + dy/y + dz/z$$

$$\mathcal{E}_{v} = \mathcal{E}_{x} + \mathcal{E}_{v} + \mathcal{E}_{z}$$