Non-Deterministic Finite Automata

Hemant Kumar

August 2, 2020

Outline

(1) Non-Deterministic Finite Automata(NFA or NDFA)
(2) Conversion NFA to DFA
(3) ε-Non-Deterministic Finite Automata(ε-NFA)

Conversions ε-NFA to NFA

Non-Deterministic Finite Automata(NFA or NDFA)

Alphabet $=\{a\}$

Non-Deterministic Finite Automata(NFA or NDFA)

Alphabet $=\{a\}$

Two choices

Non-Deterministic Finite Automata(NFA or NDFA)

Alphabet $=\{a\}$

First Choice

First Choice

First Choice

First Choice

Second Choice

Second Choice

Second Choice

Second Choice

\downarrow $a \mid a$

Non-Deterministic Finite Automata(NFA or NDFA)

Why do we need nfa's? NFA provides multiple options and are useful in solving problem easily.

Definition

The NFA contains five tuples in a

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

where,
Q is finite set of states
Σ is input alphabet
q_{0} is start state $q_{0} \in Q$
F is set of final states $Q \supseteq F$ (Q is superset of F)
δ is transition function $\delta: Q \times \Sigma \rightarrow 2^{Q}$
In NFA no need to draw dead/trap state.

Non-Deterministic Finite Automata(NFA or NDFA)

Draw NFA which accepts set of all strings start with 'a' over Σ.

Language $L=\{a, a b, a a, a a a, a b a, \ldots\}$

In NFA no need to draw dead/trap state.
In that example, $\delta(A, b)$ no such transition present here, it means NULL, then this situation is called Dead Configuration.

Conversion NFA to DFA

The steps to construct a DFA from a NFA are
(1) choose initial state and apply transition function for input alphabet.
(2) State obtaining from above step; those state is new state and apply transition function on new state and create new state.
(3) Repeat steps.

Convert NFA to DFA

input		
state	0	1
$\rightarrow p$	$\{p, q\}$	p
q	r	r
r	s	-
$* s$	s	s

Conversion NFA to DFA

Solution:

Problem:

input		
state	0	1
$\rightarrow p$	$\{p, q\}$	p
q	r	r
r	s	-
$* s$	s	s

state	input	
	0	1
$\rightarrow[p]$	$[p, q]$	$[p]$

Conversion NFA to DFA

Solution:

Problem:

input		
state	0	1
$\rightarrow p$	$\{p, q\}$	p
q	r	r
r	s	-
$* s$	s	s

state	input	
	0	1
$\rightarrow[p]$	$[p, q]$	$[p]$
$[p, q]$	$[p, q, r]$	$[p, r]$

Conversion NFA to DFA

Solution:

Problem:

input		
state	0	1
$\rightarrow p$	$\{p, q\}$	p
q	r	r
r	s	-
$* s$	s	s

state		input	
	0	1	
$\rightarrow[p]$	$[p, q]$	$[p]$	
$[p, q]$	$[p, q, r]$	$[p, r]$	
$[p, r]$	$[p, q, s]$	$[p]$	

Conversion NFA to DFA

Solution:

Problem:

input		
state	0	1
$\rightarrow p$	$\{p, q\}$	p
q	r	r
r	s	-
$* s$	s	s

state		input	
	0	1	
$\rightarrow[p]$	$[p, q]$	$[p]$	
$[p, q]$	$[p, q, r]$	$[p, r]$	
$[p, r]$	$[p, q, s]$	$[p]$	
$[p, q, r]$	$[p, q, r, s]$	$[p, r]$	

Conversion NFA to DFA

Solution:

Problem:

input		
state	0	1
$\rightarrow p$	$\{p, q\}$	p
q	r	r
r	s	-
$* s$	s	s

state	input	
	0	1
$\rightarrow[p]$	$[p, q]$	$[p]$
$[p, q]$	$[p, q, r]$	$[p, r]$
$[p, r]$	$[p, q, s]$	$[p]$
$[p, q, r]$	$[p, q, r, s]$	$[p, r]$
$*[p, q, s]$	$[p, q, r, s]$	$[p, r, s]$

Conversion NFA to DFA

Solution:

Problem:

input		
state	0	1
$\rightarrow p$	$\{p, q\}$	p
q	r	r
r	s	-
$* s$	s	s

state	input	
	0	1
$\rightarrow[p]$	$[p, q]$	$[p]$
$[p, q]$	$[p, q, r]$	$[p, r]$
$[p, r]$	$[p, q, s]$	$[p]$
$[p, q, r]$	$[p, q, r, s]$	$[p, r]$
$*[p, q, s]$	$[p, q, r, s]$	$[p, r, s]$
$*[p, q, r, s]$	$[p, q, r, s]$	$[p, r, s]$

Conversion NFA to DFA

Solution:

Problem:

input		
state	0	1
$\rightarrow p$	$\{p, q\}$	p
q	r	r
r	s	-
$* s$	s	s

state	input	
	0	1
$\rightarrow[p]$	$[p, q]$	$[p]$
$[p, q]$	$[p, q, r]$	$[p, r]$
$[p, r]$	$[p, q, s]$	$[p]$
$[p, q, r]$	$[p, q, r, s]$	$[p, r]$
$*[p, q, s]$	$[p, q, r, s]$	$[p, r, s]$
$*[p, q, r, s]$	$[p, q, r, s]$	$[p, r, s]$
$*[p, r, s]$	$[p, q, s]$	$[p, s]$

Conversion NFA to DFA

Solution:

Problem:

input		
state	0	1
$\rightarrow p$	$\{p, q\}$	p
q	r	r
r	s	-
$* s$	s	s

state	0	input
	0	1
$\rightarrow[p]$	$[p, q]$	$[p]$
$[p, q]$	$[p, q, r]$	$[p, r]$
$[p, r]$	$[p, q, s]$	$[p]$
$[p, q, r]$	$[p, q, r, s]$	$[p, r]$
$*[p, q, s]$	$[p, q, r, s]$	$[p, r, s]$
$*[p, q, r, s]$	$[p, q, r, s]$	$[p, r, s]$
$*[p, r, s]$	$[p, q, s]$	$[p, s]$
$*[p, s]$	$[p, q, s]$	$[p, s]$

Conversion NFA to DFA

Solution:

Problem:

input		
state	0	1
$\rightarrow p$	$\{p, q\}$	p
q	r	r
r	s	-
$* s$	s	s

state	input	
	$[p, q]$	$[p]$
$[p, q]$	$[p, q, r]$	$[p, r]$
$[p, r]$	$[p, q, s]$	$[p]$
$[p, q, r]$	$[p, q, r, s]$	$[p, r]$
$*[p, q, s]$	$[p, q, r, s]$	$[p, r, s]$
$*[p, q, r, s]$	$[p, q, r, s]$	$[p, r, s]$
$*[p, r, s]$	$[p, q, s]$	$[p, s]$
$*[p, s]$	$[p, q, s]$	$[p, s]$

ε-Non-Deterministic Finite Automata(ε-NFA)

Definition

The NFA contains five tuples in a
$M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where,
Q is finite set of states
Σ is input alphabet
q_{0} is start state $q_{0} \in Q$
F is set of final states $Q \supseteq F(Q$ is superset of $F)$
δ is transition function $\delta: Q \times\{\Sigma \cup \varepsilon\} \rightarrow 2^{Q}$

Conversions ε-NFA to NFA

Stpes for Conversions

1. Obtain ε - closure of all the states.
2. Apply extended transition function for all input to all state $\delta^{\prime}(q$, input $)=\varepsilon-\operatorname{closure}(\delta(\varepsilon-\operatorname{closure}(q)$, input $))$
3. Repeat the step for all state and all input

closure

The ε - closure of state is a set of all states which are reachable from the given state using ε as input (and also include self state).

$$
\begin{aligned}
& \varepsilon-\operatorname{closure}(A)=\{A, B, C\} \\
& \varepsilon-\operatorname{closure}(B)=\{B, C\} \\
& \varepsilon-\operatorname{closure}(C)=\{C\} \\
& \varepsilon-\operatorname{closure}(D)=\{D\}
\end{aligned}
$$

Conversions ε-NFA to NFA

2. Apply extended transition function $\left(\delta^{\prime}\right)$

The ε - closure of state is a set of all states which are reachable from the given state using ε as input (and also include self state).

$$
\begin{aligned}
\delta^{\prime}(A, a) & =\varepsilon-\operatorname{closure}(\delta(\varepsilon-\operatorname{closure}(A), a)) \\
& =\varepsilon-\operatorname{closure}(\delta(\{A, B, C\}, a)) \\
& =\varepsilon-\operatorname{closure}(\delta(A, a) \cup \delta(B, a) \cup \delta(C, a)) \\
& =\varepsilon-\operatorname{closure}(\{A, D, C\}) \\
& =\varepsilon-\operatorname{closure}(A) \cup \varepsilon-\operatorname{closure}(D) \cup \varepsilon-\operatorname{closure}(C) \\
& =\{A, B, C\} \cup\{D\} \cup\{C\} \\
& =\{A, B, C, D\}
\end{aligned}
$$

$$
\begin{aligned}
\delta^{\prime}(A, b) & =\varepsilon-\operatorname{closure}(\delta(\varepsilon-\operatorname{closure}(A), b)) \\
& =\varepsilon-\operatorname{closure}(\delta(\{A, B, C\}, b)) \\
& =\varepsilon-\operatorname{closure}(\delta(A, b) \cup \delta(B, b) \cup \delta(C, b)) \\
& =\varepsilon-\operatorname{closure}(\{\phi \cup \phi \cup C\}) \\
& =\varepsilon-\operatorname{closure}(C) \\
& =\{C\}
\end{aligned}
$$

(2)

2. Apply extended transition function $\left(\delta^{\prime}\right)$

$$
\begin{aligned}
\delta^{\prime}(B, a) & =\varepsilon-\operatorname{closure}(\delta(\varepsilon-\operatorname{closure}(B), a)) \\
& =\{C, D\} \\
\delta^{\prime}(B, b) & =\varepsilon-\operatorname{closure}(\delta(\varepsilon-\operatorname{closure}(B), b)) \\
& =\{D\}
\end{aligned}
$$

$$
\begin{aligned}
\delta^{\prime}(C, a) & =\varepsilon-\operatorname{closure}(\delta(\varepsilon-\operatorname{closure}(C), a)) \\
& =\{\phi\}
\end{aligned}
$$

$$
\delta^{\prime}(C, b)=\varepsilon-\operatorname{closure}(\delta(\varepsilon-\operatorname{closure}(C), b))
$$

$$
=\{B, D\}
$$

$$
\begin{align*}
\delta^{\prime}(D, a) & =\varepsilon-\operatorname{closure}(\delta(\varepsilon-\operatorname{closure}(D), a)) \tag{7}\\
& =\{D\}
\end{align*}
$$

$$
\begin{aligned}
\delta^{\prime}(D, b) & =\varepsilon-\operatorname{closure}(\delta(\varepsilon-\operatorname{closure}(D), b)) \\
& =\{D\}
\end{aligned}
$$

Now

Now, summarize all the δ^{\prime} computed,

$$
\begin{array}{lll}
\delta^{\prime}(A, a)=\{A, B, C, D\}, & \delta^{\prime}(A, b)=\{C\}, & \delta^{\prime}(B, a)=\{C, D\}, \\
\delta^{\prime}(B, b)=\{D\}, & \delta^{\prime}(C, a)=\{\phi\}, & \delta^{\prime}(C, b)=\{B, D\}, \\
\delta^{\prime}(D, a)=\{D\}, & \delta^{\prime}(D, b)=\{D\} &
\end{array}
$$

Here A, B, and C is a final state because
$\varepsilon-\operatorname{closure}(A)$,
$\varepsilon-\operatorname{closure}(B)$ and
ε - closure (C)
contains final state C.

Conversion $\varepsilon-$ NFA to DFA

Steps for conversions

1. Obtains ε-closure of all states.

Let $\varepsilon-\operatorname{closure}(q)=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right\}$ then $\left[p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right]$ becomes new states of DFA.
2. Apply given extended transition function on new state which is generated by step 1 .
We apply transition function to new states $\left[p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right]$ for each input.

$$
\begin{aligned}
\delta^{\prime}\left(\left[p_{1}, p_{2}, \ldots, p_{n}\right], a\right) & =\varepsilon-\operatorname{closure}\left(\delta\left(p_{1}, a\right) \cup \delta\left(p_{2}, a\right) \cup \ldots \delta\left(p_{n}, a\right)\right. \\
& =\bigcup_{i=1}^{n} \varepsilon-\operatorname{closure}\left(\delta\left(p_{i}, \text { input }\right)\right)
\end{aligned}
$$

