Regular Expression

Hemant Kumar

July 28, 2020

Outline

(1) Regular Expression
(2) Identities of Regular Expression
(3) Laws for Regular expression
(4) Arden's Theorem
(5) Regular Expression to Finite Automata
(6) Finite Automata to Regular Expression

Regular Expression

A language accepted by a finite automata are easily described by expression,called Regular Expression.

Definition

Let Σ be an input alphabet, the regular expression over Σ can be defined as
(a) ϕ is empty set and ε is empty string then its regular expression is $\} \&\{\varepsilon\}$ respectively i.e.
$\phi \quad \longrightarrow \quad\}$
$\varepsilon \longrightarrow\{\varepsilon\}$
$a \in \Sigma \quad \longrightarrow \quad\{a\} \quad$ i.e. $\{$ Primitive regular expression $\}$
(b) Let r_{1} and r_{2} be the primitive regular expressions and apply any of the operators such as union $(+)$, concatenation (\cdot), and kleen closure (*) ;
$r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1} *$ is regular expressions.
(c) We can apply any number of time and we get regular expressions

Example: Let $\Sigma=\{a, b\}$

(1) Language accepting all combinition of a's over the input $\Sigma=\{a\}$. Solution: R.E. $=\{\varepsilon, a, a a, a a a, \ldots\}=a^{*}$

Example: Let $\Sigma=\{a, b\}$

(1) Language accepting all combinition of a's over the input $\Sigma=\{a\}$. Solution: R.E. $=\{\varepsilon, a, a a, a a a, \ldots\}=a^{*}$
(2) Language accepting all combinition of a's except the null string over the input $\Sigma=\{a\}$.
Solution: R.E. $=\{a, a a, a a a, \ldots\}=a^{+}$

Example: Let $\Sigma=\{a, b\}$

(1) Language accepting all combinition of a's over the input $\Sigma=\{a\}$. Solution: R.E. $=\{\varepsilon, a, a a, a a a, \ldots\}=a^{*}$
(2) Language accepting all combinition of a's except the null string over the input $\Sigma=\{a\}$.
Solution: R.E. $=\{a, a a, a a a, \ldots\}=a^{+}$
(3) Language accepting 'a' is atleast one time over the input $\Sigma=\{a\}$. Solution: R.E. $=(\varepsilon+a)$

Example: Let $\Sigma=\{a, b\}$

(1) Language accepting all combinition of a's over the input $\Sigma=\{a\}$. Solution: R.E. $=\{\varepsilon, a, a a, a a a, \ldots\}=a^{*}$
(2) Language accepting all combinition of a's except the null string over the input $\Sigma=\{a\}$.
Solution: R.E. $=\{a, a a, a a a, \ldots\}=a^{+}$
(3) Language accepting 'a' is atleast one time over the input $\Sigma=\{a\}$. Solution: R.E. $=(\varepsilon+a)$
(4) Language Containing all the strings contains any number of a's and b's over input $\Sigma=\{a, b\}$.
Solution: R.E $=(a+b)^{*}$

Example: Let $\Sigma=\{a, b\}$

(1) Language accepting all combinition of a's over the input $\Sigma=\{a\}$. Solution: R.E. $=\{\varepsilon, a, a a, a a a, \ldots\}=a^{*}$
(2) Language accepting all combinition of a's except the null string over the input $\Sigma=\{a\}$.
Solution: R.E. $=\{a, a a, a a a, \ldots\}=a^{+}$
(3) Language accepting 'a' is atleast one time over the input $\Sigma=\{a\}$. Solution: R.E. $=(\varepsilon+a)$
(4) Language Containing all the strings contains any number of a's and b's over input $\Sigma=\{a, b\}$.
Solution: R.E $=(a+b)^{*}$
(5) Language Containing all the strings contains any number of a's and b's except the null string over input $\Sigma=\{a, b\}$.
Solution: $R . E=(a+b)^{+}$

Example: Let $\Sigma=\{a, b\}$

(1) Length of the string exactly two.
$L_{1}=\{a a, a b, b a, b b\}$
Here comma represent union (i.e +) so
R.E. $=a a+a b+b a+b b=a(a+b)+b(a+b)=(a+b)(a+b)$

Example: Let $\Sigma=\{a, b\}$

(1) Length of the string exactly two.
$L_{1}=\{a a, a b, b a, b b\}$
Here comma represent union (i.e +) so
R.E. $=a a+a b+b a+b b=a(a+b)+b(a+b)=(a+b)(a+b)$
(2) Length of the string atleast two.
$L_{1}=\{a a, a b, b a, b b, a a a, a b a, b b b, \ldots\}$
R.E. $=(a+b)(a+b)(a+b)^{*}$

Example: Let $\Sigma=\{a, b\}$

(1) Length of the string exactly two.
$L_{1}=\{a a, a b, b a, b b\}$
Here comma represent union (i.e +) so
R.E. $=a a+a b+b a+b b=a(a+b)+b(a+b)=(a+b)(a+b)$
(2) Length of the string atleast two.
$L_{1}=\{a a, a b, b a, b b, a a a, a b a, b b b, \ldots\}$
R.E. $=(a+b)(a+b)(a+b)^{*}$
(3) Length of the string atmost two.
$L_{1}=\{\varepsilon, a, b, a a, a b, b a, b b\}$
R.E. $=(a+b+\varepsilon)(a+b+\varepsilon)$

Example: Let $\Sigma=\{a, b\}$

(1) Length of the string exactly two.
$L_{1}=\{a a, a b, b a, b b\}$
Here comma represent union (i.e +) so
R.E. $=a a+a b+b a+b b=a(a+b)+b(a+b)=(a+b)(a+b)$
(2) Length of the string atleast two.
$L_{1}=\{a a, a b, b a, b b, a a a, a b a, b b b, \ldots\}$
R.E. $=(a+b)(a+b)(a+b)^{*}$
(3) Length of the string atmost two.
$L_{1}=\{\varepsilon, a, b, a a, a b, b a, b b\}$
R.E. $=(a+b+\varepsilon)(a+b+\varepsilon)$
(4) Length of the string are even.
$L_{1}=\{\varepsilon, a a, a b, b a, b b, a a a a, a a b a, a b b b, \ldots\}$
R.E. $=(a+b)^{2 n}=((a+b)(a+b))^{*}$

Example: Let $\Sigma=\{a, b\}$

(1) Length of the string exactly two.
$L_{1}=\{a a, a b, b a, b b\}$
Here comma represent union (i.e +) so
R.E. $=a a+a b+b a+b b=a(a+b)+b(a+b)=(a+b)(a+b)$
(2) Length of the string atleast two.
$L_{1}=\{a a, a b, b a, b b, a a a, a b a, b b b, \ldots\}$
R.E. $=(a+b)(a+b)(a+b)^{*}$
(3) Length of the string atmost two.
$L_{1}=\{\varepsilon, a, b, a a, a b, b a, b b\}$
R.E. $=(a+b+\varepsilon)(a+b+\varepsilon)$
(4) Length of the string are even.
$L_{1}=\{\varepsilon, a a, a b, b a, b b, a a a a, a a b a, a b b b, \ldots\}$
R.E. $=(a+b)^{2 n}=((a+b)(a+b))^{*}$
(5) Length of the string is odd.
$L_{1}=\{a, b, a a a, a a b, b b a, a b b, a b a, b b b, \ldots\}$
R.E. $=((a+b)(a+b))^{*}(a+b)$

Identities of Regular Expression

Let R be the regular expression

$$
\begin{aligned}
& \Rightarrow \phi+R=R+\phi=R \\
& \Rightarrow \phi \cdot R=R \cdot \phi=\phi \\
& \Rightarrow \varepsilon \cdot R=R \cdot \varepsilon=R \\
& \Rightarrow \varepsilon^{*}=\varepsilon \\
& \Rightarrow \phi^{*}=\varepsilon \\
& \Rightarrow \varepsilon+R R^{*}=R^{*} R+\varepsilon=R^{*} \\
& \Rightarrow(P Q)^{*} P=P(Q P)^{*}
\end{aligned}
$$

Let a and b be the regular expression then $(a+b)^{*}=\left(a^{*}+b^{*}\right)^{*}=\left(a^{*} \cdot b^{*}\right)^{*}$

Laws for Regular expression

Commutative Law

Let r and s be a regular expression then

$$
\begin{aligned}
r+s & =s+r \text { for union } \\
r \cdot s & =s \cdot r \text { for Concatenation }
\end{aligned}
$$

Associative Law

Let r, s and p be a regular expression then

$$
\begin{aligned}
(r+s)+p & =r+(s+p) \text { for union } \\
(r \cdot s) \cdot & =r \cdot(s \cdot p) \text { for Concatenation }
\end{aligned}
$$

Distributive Law

Let r, s and p be a regular expression then

$$
p \cdot(r+s)=p \cdot r+p \cdot s=(p+r) \cdot s
$$

Laws for Regular expression

Idempotent Law

Let r be a regular expression then

$$
r+r=r \text { for union }
$$

Law of closure

Let r be a regular expression then
(1) $\left(r^{*}\right)^{*}=r^{*}$
(2) $\phi^{*}=\varepsilon$
(3) $\varepsilon^{*}=\varepsilon$
(4) $r^{*}=r^{+}+\varepsilon$

Inequlatites in Regular Expression

Let r, s and p be a regular expression then
(1) $\left(r . s^{*}\right) \neq(r . s)^{*}$
(2) $(r+s)^{*} \neq r+s^{*}$
(3) $(r+s)^{*} \neq r^{*}+s^{*}$
(4) $(r+s)^{*} \neq r^{*} . s^{*}$

Arden's Theorem

Arden's Theorem

Let P and Q be the two regular expression over the input alphabet Σ, if P does not contain ε then the equation

$$
R=Q+R P ; \quad \text { where } R \text { is regular expression }
$$

has a unique solution, i.e.

$$
R=Q P^{*}
$$

Example: Prove that :

$$
\left(1+00^{*} 1\right)+\left(1+00^{*} 1\right)\left(0+10^{*} 1\right)^{*}\left(0+10^{*} 1\right)=0^{*} 1\left(0+10^{*} 1\right)^{*}
$$

Solution: Let $\mathrm{P}=\left(1+00^{*} 1\right)$ and $\mathrm{Q}=\left(0+10^{*} 1\right)$

$$
\begin{array}{rlr}
\text { L.H.S } & =\left(1+00^{*} 1\right)+\left(1+00^{*} 1\right)\left(0+10^{*} 1\right)^{*}\left(0+10^{*} 1\right) \\
& \left.=P+P S^{*} S=P\left(\varepsilon+S^{*} S\right)=P S^{*} \quad \text { \{Replace the value with } P \text { and } Q\right\} \\
& =\left(1+00^{*} 1\right) \cdot\left(0+10^{*} 1\right)^{*} & \\
& =\left(\varepsilon+00^{*}\right) 1 \cdot\left(0+10^{*} 1\right)^{*} & \\
& =0^{*} 1 \cdot\left(0+10^{*} 1\right)^{*} \\
& =\text { R.H.S }
\end{array}
$$

Regular Expression to Finite Automata

Let a and b be the regular expression. Some basic finite automata for primitive regular expression.

1. Finite automata for empty string (ϕ)

Regular Expression to Finite Automata

Let a and b be the regular expression. Some basic finite automata for primitive regular expression.

1. Finite automata for empty string (ϕ)

2. Finite automata for null string (ε)

Regular Expression to Finite Automata

Let a and b be the regular expression. Some basic finite automata for primitive regular expression.

1. Finite automata for empty string (ϕ)

2. Finite automata for null string (ε)

3. For regular expression ' a^{\prime}

Regular Expression to Finite Automata

Let a and b be the regular expression. Some basic finite automata for primitive regular expression.

1. Finite automata for empty string (ϕ)

2. Finite automata for null string (ε)

3. For regular expression ' a^{\prime}

4. For regular expression ' $a+b^{\prime}$

Regular Expression to Finite Automata

5. For regular expression 'a.b'

Regular Expression to Finite Automata

5. For regular expression 'a.b'

6. For regular expression a*

OR

Regular Expression to Finite Automata

Example 1.: Construct finite automata for $(a b+b a)^{*}$ Solution:

FA to RE Using State Elemination Method

1. Initial state should not have any incoming edge, if it is then initial state.

convert to

FA to RE Using State Elemination Method

2. In final state should not have any outgoing edges. If it is then create new final state with ε and make it non final state.
a. If one Final State

convert into

FA to RE Using State Elemination Method

2. In final state should not have any outgoing edges. If it is then create new final state with ε and make it non final state.
b. If DFA contain more than one final state then we add one new final state with ε moves and make final state to non-final state.

FA to RE Using State Elemination Method

2. In final state should not have any outgoing edges. If it is then create new final state with ε and make it non final state.
b. If DFA contain more than one final state then we add one new final state with ε moves and make final state to non-final state.

3. After that, other than the final and initial state, eliminate the remaining state one by one.

Examples

Example 1. Findout the regular expression for the given finite automata.

Solution: first to simplify the FA

Here comma represent the union so the regular expression is
R.E. $=a+b+c$

Examples

Example 2. Findout the regular expression for the given finite automata.

Solution: first to simplify the FA

Here dot represent the concatenation so the regular expression is R.E. $=a . b$

Examples

Example 3. Findout the regular expression for the given finite automata.

Solution: first to simplify the FA using eliminate state B

so the regular expression is
$R . E .=a . b^{*} . c$

Examples

Example 4. Findout the regular expression for the given finite automata.

Solution: Create new state which is initial state q_{s} and final state q_{f} because initial state A have incoming edge and final state B have outgoing edge

$$
\begin{aligned}
& \text { start } \rightarrow q_{s} \xrightarrow{\varepsilon \cdot a=a} \xrightarrow{\text { ba }} \quad \varepsilon \xrightarrow{\text { ba }} \\
& \text { start } \rightarrow q_{s} \xrightarrow{a .(b a)^{*} . \varepsilon=a .(b a)^{*}}
\end{aligned}
$$

the regular expression is
R.E. $=a .(b a)^{*}$

