Regular Expression

Hemant Kumar

July 28, 2020

Hemant Kumar (I.T., UIET, CSJMU)

Finite Automata

July 28, 2020 1 / 20

・ロト ・日 ・ ・ ヨ ・ ・

Outline

- 1 Regular Expression
- 2 Identities of Regular Expression
- 3 Laws for Regular expression
- 4 Arden's Theorem
- **5** Regular Expression to Finite Automata
- 6 Finite Automata to Regular Expression

Regular Expression

A language accepted by a finite automata are easily described by expression, called *Regular Expression*.

Definition

Let Σ be an input alphabet, the regular expression over Σ can be defined as

(a) ϕ is empty set and ε is empty string then its regular expression is { } & { ε } respectively i.e. $\phi \longrightarrow$ { } $\varepsilon \longrightarrow$ { ε } $a \in \Sigma \longrightarrow$ { a } i.e. {*Primitive regular expression* }

(b) Let r₁ and r₂ be the primitive regular expressions and apply any of the operators such as union(+), concatenation(·), and kleen closure(*);

 $r_1 + r_2$, $r_1 \cdot r_2$, r_1* is regular expressions.

(c) We can apply any number of time and we get regular expressions

Language accepting all combinition of a's over the input Σ = {a}.
 Solution: R.E. = {ε, a, aa, aaa, ...} = a*

イロト イポト イヨト イヨト

- Language accepting all combinition of a's over the input Σ = {a}.
 Solution: R.E. = {ε, a, aa, aaa, ...} = a*
- 2 Language accepting all combinition of a's except the null string over the input Σ = {a}.
 Solution: R.E. = {a, aa, aaa, ...} = a⁺

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Language accepting all combinition of a's over the input Σ = {a}.
 Solution: R.E. = {ε, a, aa, aaa, ...} = a*
- 2 Language accepting all combinition of a's except the null string over the input Σ = {a}.
 Solution: R.E. = {a, aa, aaa, ...} = a⁺
- Solution: R.E. = (ε + a)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Language accepting all combinition of a's over the input Σ = {a}.
 Solution: R.E. = {ε, a, aa, aaa, ...} = a*
- 2 Language accepting all combinition of a's except the null string over the input Σ = {a}.
 Solution: R.E. = {a, aa, aaa, ...} = a⁺
- Solution: R.E. = (ε + a)
- 4 Language Containing all the strings contains any number of a's and b's over input Σ = {a, b}.
 Solution: R.E = (a + b)*

イロト 不得 トイラト イラト 二日

- Language accepting all combinition of a's over the input Σ = {a}.
 Solution: R.E. = {ε, a, aa, aaa, ...} = a*
- 2 Language accepting all combinition of a's except the null string over the input Σ = {a}.
 Solution: R.E. = {a, aa, aaa, ...} = a⁺
- Solution: R.E. = (ε + a)
- 4 Language Containing all the strings contains any number of a's and b's over input Σ = {a, b}.
 Solution: R.E = (a + b)*
- Language Containing all the strings contains any number of a's and b's except the null string over input Σ = {a, b}. Solution: R.E = (a + b)⁺

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Length of the string exactly two.
L₁ = {aa, ab, ba, bb}
Here comma represent union (i.e +) so
R.E. = aa + ab + ba + bb = a(a + b) + b(a + b) = (a + b)(a + b)

 Length of the string exactly two. L₁ = {aa, ab, ba, bb} Here comma represent union (i.e +) so R.E. = aa + ab + ba + bb = a(a + b) + b(a + b) = (a + b)(a + b)

 Length of the string atleast two. L₁ = {aa, ab, ba, bb, aaa, aba, bbb, ...} R.E. = (a + b)(a + b)(a + b)*

 Length of the string exactly two. L₁ = {aa, ab, ba, bb} Here comma represent union (i.e +) so R.E. = aa + ab + ba + bb = a(a + b) + b(a + b) = (a + b)(a + b)
 2 Length of the string atleast two. L₁ = {aa, ab, ba, bb, aaa, aba, bbb, ...} R.E. = (a + b)(a + b)(a + b)*
 3 Length of the string atmost two. L₁ = {ε, a, b, aa, ab, ba, bb} R.E. = (a + b + ε)(a + b + ε)

 Length of the string exactly two. $L_1 = \{aa, ab, ba, bb\}$ Here comma represent union (i.e +) so R.E. = aa + ab + ba + bb = a(a + b) + b(a + b) = (a + b)(a + b)2 Length of the string atleast two. $L_1 = \{aa, ab, ba, bb, aaa, aba, bbb, \ldots\}$ $R.E. = (a + b)(a + b)(a + b)^*$ 3 Length of the string atmost two. $L_1 = \{\varepsilon, a, b, aa, ab, ba, bb\}$ $R.E. = (a + b + \varepsilon)(a + b + \varepsilon)$ 4 Length of the string are even. $L_1 = \{\varepsilon, aa, ab, ba, bb, aaaa, aaba, abbb, \ldots\}$ $R.E. = (a + b)^{2n} = ((a + b)(a + b))^*$

< 日 > < 同 > < 回 > < 回 > < 回 > <

 Length of the string exactly two. $L_1 = \{aa, ab, ba, bb\}$ Here comma represent union (i.e +) so R.E. = aa + ab + ba + bb = a(a + b) + b(a + b) = (a + b)(a + b)2 Length of the string atleast two. $L_1 = \{aa, ab, ba, bb, aaa, aba, bbb, \ldots\}$ $R.E. = (a + b)(a + b)(a + b)^*$ 3 Length of the string atmost two. $L_1 = \{\varepsilon, a, b, aa, ab, ba, bb\}$ $R.E. = (a + b + \varepsilon)(a + b + \varepsilon)$ 4 Length of the string are even. $L_1 = \{\varepsilon, aa, ab, ba, bb, aaaa, aaba, abbb, \ldots\}$ $R.E. = (a + b)^{2n} = ((a + b)(a + b))^*$ **5** Length of the string is odd. $L_1 = \{a, b, aaa, aab, bba, abb, aba, bbb, \ldots\}$ $R.E. = ((a + b)(a + b))^*(a + b)$ ・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Identities of Regular Expression

Let R be the regular expression $\Rightarrow \phi + R = R + \phi = R$ $\Rightarrow \phi \cdot R = R \cdot \phi = \phi$ $\Rightarrow \varepsilon \cdot R = R \cdot \varepsilon = R$ $\Rightarrow \varepsilon^* = \varepsilon$ $\Rightarrow \phi^* = \varepsilon$ $\Rightarrow \phi^* = \varepsilon$ $\Rightarrow \varepsilon + RR^* = R^*R + \varepsilon = R^*$ $\Rightarrow (PQ)^*P = P(QP)^*$ Let a and b be the regular expression then $(a + b)^* = (a^* + b^*)^* = (a^*.b^*)^*$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Laws for Regular expression

Commutative Law

Let r and s be a regular expression then

r + s = s + r for union $r \cdot s = s \cdot r$ for Concatenation

Associative Law

Let r, s and p be a regular expression then

$$(r+s) + p = r + (s+p)$$
 for union
 $(r \cdot s) \cdot = r \cdot (s \cdot p)$ for Concatenation

Distributive Law

Let r, s and p be a regular expression then

$$p \cdot (r+s) = p \cdot r + p \cdot s = (p+r) \cdot s$$

Hemant Kumar (I.T., UIET, CSJMU)

Laws for Regular expression

Idempotent Law

Let r be a regular expression then

$$r + r = r$$
 for union

Law of closure

Let r be a regular expression then

*

$$(r^*)^* = r$$

$$\bullet r^* = r^+ + \varepsilon$$

イロト イポト イラト イラ

Inequlatites in Regular Expression

Let r,s and p be a regular expression then

- 1 $(r.s^*) \neq (r.s)^*$ 2 $(r+s)^* \neq r+s^*$ 3 $(r+s)^* \neq r^*+s^*$
- 4 $(r+s)^* \neq r^*.s^*$

イロト イポト イヨト イヨト

Arden's Theorem

Arden's Theorem

Let *P* and *Q* be the two regular expression over the input alphabet Σ , if P does not contain ε then the equation

R = Q + RP; where R is regular expression

has a unique solution, i.e.

 $R = QP^*$

Example: Prove that :

$$(1 + 00^*1) + (1 + 00^*1)(0 + 10^*1)^*(0 + 10^*1) = 0^*1(0 + 10^*1)^*$$

Solution: Let $P = (1 + 00^* 1)$ and $Q = (0 + 10^* 1)$

$$\begin{aligned} L.H.S &= (1+00^*\,1) + (1+00^*\,1)(0+10^*\,1)^* (0+10^*\,1) \\ &= P + PS^*S = P(\varepsilon + S^*S) = PS^* & \{ \text{Replace the value with } P \text{ and } Q \} \\ &= (1+00^*\,1) \cdot (0+10^*\,1)^* & \{ \text{Substitute the } P \text{ and } Q \} \\ &= (\varepsilon + 00^*\,1) \cdot (0+10^*\,1)^* & \\ &= 0^*\,1 \cdot (0+10^*\,1)^* & \\ &= R.H.S \end{aligned}$$

Hemant Kumar (I.T., UIET, CSJMU)

A (1) > A (2) > A

Let a and b be the regular expression. Some basic finite automata for primitive regular expression.

1. Finite automata for empty string (ϕ)

start
$$\rightarrow$$

A (10) < A (10) < A (10)</p>

Let a and b be the regular expression. Some basic finite automata for primitive regular expression.

1. Finite automata for empty string (ϕ)

2. Finite automata for null string (ε)

start
$$\rightarrow$$

start →

Hemant Kumar (I.T., UIET, CSJMU)

A (1) > A (2) > A

Let a and b be the regular expression. Some basic finite automata for primitive regular expression.

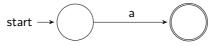
start \rightarrow

1. Finite automata for empty string (ϕ)

2. Finite automata for null string (ε)

start \rightarrow

3. For regular expression 'a'



Let a and b be the regular expression. Some basic finite automata for primitive regular expression.

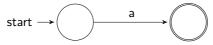
start \rightarrow

1. Finite automata for empty string (ϕ)

2. Finite automata for null string (ε)

start \rightarrow

3. For regular expression 'a'



4. For regular expression 'a + b'

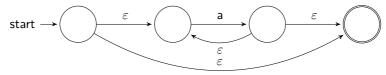
Hemant Kumar (I.T., UIET, CSJMU)

5. For regular expression 'a.b'

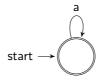
5. For regular expression 'a.b'

start \rightarrow $a \rightarrow$ $b \rightarrow$ \bigcirc

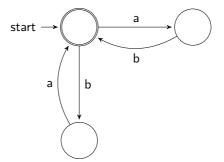
6. For regular expression a*



OR

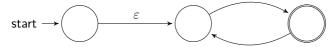


Example 1.: Construct finite automata for $(ab + ba)^*$ Solution:



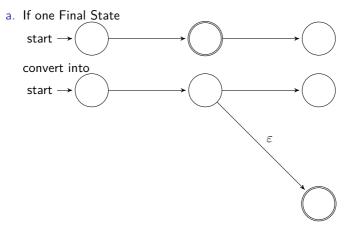
1. Initial state should not have any incoming edge, if it is then initial state.

convert to

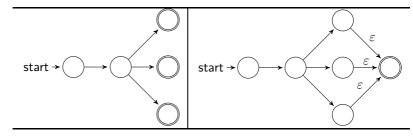


▲ 同 ▶ ▲ 国 ▶

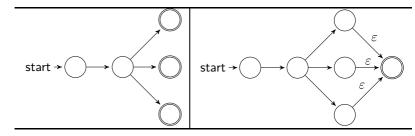
2. In final state should not have any outgoing edges. If it is then create new final state with ε and make it non final state.



- 2. In final state should not have any outgoing edges. If it is then create new final state with ε and make it non final state.
 - b. If DFA contain more than one final state then we add one new final state with ε moves and make final state to non-final state.



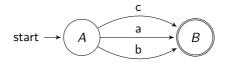
- 2. In final state should not have any outgoing edges. If it is then create new final state with ε and make it non final state.
 - b. If DFA contain more than one final state then we add one new final state with ε moves and make final state to non-final state.



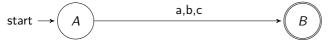
3. After that, other than the final and initial state, eliminate the remaining state one by one.

A (1) > A (2) > A

Example 1. Findout the regular expression for the given finite automata.



Solution: first to simplify the FA



Here comma represent the union so the regular expression is R.E. = a + b + c

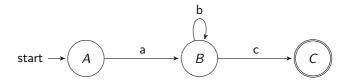
Example 2. Findout the regular expression for the given finite automata.

Solution: first to simplify the FA

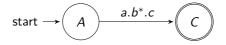
Here dot represent the concatenation so the regular expression is R.E. = a.b

イロト イポト イヨト イヨト

Example 3. Findout the regular expression for the given finite automata.

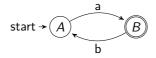


Solution: first to simplify the FA using eliminate state B

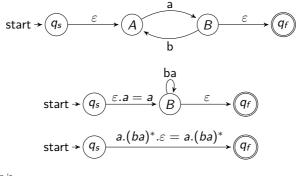


so the regular expression is $R.E. = a.b^*.c$

Example 4. Findout the regular expression for the given finite automata.



Solution: Create new state which is initial state q_s and final state q_f because initial state A have incoming edge and final state B have outgoing edge



the regular expression is $R.E. = a.(ba)^*$

Hemant Kumar (I.T., UIET, CSJMU)

イロト イポト イヨト イヨ