
Lecture 11

Data warehouse Schema

n a data warehouse, a schema is used to define the way to
organize the system with all the database entities (fact
tables, dimension tables) and their logical association.

Here are the different types of Schemas in DW:
1. Star Schema
2. SnowFlake Schema
3. Galaxy Schema
4. Star Cluster Schema

1) Star Schema

This is the simplest and most effective schema in a data
warehouse. A fact table in the center surrounded by multiple
dimension tables resembles a star in the Star Schema model.

The fact table maintains one-to-many relations with all the
dimension tables. Every row in a fact table is associated with
its dimension table rows with a foreign key reference.

Due to the above reason, navigation among the tables in this
model is easy for querying aggregated data. An end-user can
easily understand this structure. Hence all the Business
Intelligence (BI) tools greatly support the Star schema model.

While designing star schemas the dimension tables are
purposefully de-normalized. They are wide with many
attributes to store the contextual data for better analysis and
reporting.

Benefits Of Star Schema
 Queries use very simple joins while retrieving the data

and thereby query performance is increased.
 It is simple to retrieve data for reporting, at any point of

time for any period.
Disadvantages Of Star Schema

 If there are many changes in the requirements, the
existing star schema is not recommended to modify and
reuse in the long run.

 Data redundancy is more as tables are not hierarchically
divided.

An example of a Star Schema is given below.

Querying A Star Schema
An end-user can request a report using Business Intelligence
tools. All such requests will be processed by creating a chain
of “SELECT queries” internally. The performance of these
queries will have an impact on the report execution time.

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Star-Schema.jpg

From the above Star schema example, if a business user
wants to know how many Novels and DVDs have been sold in
the state of Kerala in January in 2018, then you can apply the
query as follows on Star schema tables:

SELECT pdim.Name Product_Name,
 Sum (sfact.sales_units) Quanity_Sold
FROM Product pdim,
 Sales sfact,
 Store sdim,
 Date ddim
WHERE sfact.product_id = pdim.product_id
 AND sfact.store_id = sdim.store_id
 AND sfact.date_id = ddim.date_id
 AND sdim.state = 'Kerala'
 AND ddim.month = 1
 AND ddim.year = 2018
 AND pdim.Name in (‘Novels’, ‘DVDs’)
GROUP BY pdim.Name
Results:

Product_Name Quantity_Sold

Novels 12,702

DVDs 32,919

Hope you understood how easy it is to query a Star Schema.

#2) SnowFlake Schema
Star schema acts as an input to design a SnowFlake schema.
Snow flaking is a process that completely normalizes all the
dimension tables from a star schema.

The arrangement of a fact table in the center surrounded by
multiple hierarchies of dimension tables looks like a
SnowFlake in the SnowFlake schema model. Every fact table
row is associated with its dimension table rows with a foreign
key reference.

While designing SnowFlake schemas the dimension tables are
purposefully normalized. Foreign keys will be added to each
level of the dimension tables to link to its parent attribute.
The complexity of the SnowFlake schema is directly
proportional to the hierarchy levels of the dimension tables.

Benefits of SnowFlake Schema:
 Data redundancy is completely removed by creating

new dimension tables.
 When compared with star schema, less storage space is

used by the Snow Flaking dimension tables.
 It is easy to update (or) maintain the Snow Flaking

tables.
Disadvantages of SnowFlake Schema:

 Due to normalized dimension tables, the ETL system has
to load the number of tables.

 You may need complex joins to perform a query due to
the number of tables added. Hence query performance
will be degraded.

An example of a SnowFlake Schema is given below.

The Dimension Tables in the above SnowFlake Diagram are
normalized as explained below:

 Date dimension is normalized into Quarterly, Monthly
and Weekly tables by leaving foreign key ids in the Date
table.

 The store dimension is normalized to comprise the table
for State.

 The product dimension is normalized into Brand.
 In the Customer dimension, the attributes connected to

the city are moved into the new City table by leaving a
foreign key id in the Customer table.

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Snowflake-Schema.jpg

In the same way, a single dimension can maintain multiple
levels of hierarchy.

Different levels of hierarchies from the above diagram can
be referred to as follows:

 Quarterly id, Monthly id, and Weekly ids are the new
surrogate keys that are created for Date dimension
hierarchies and those have been added as foreign keys
in the Date dimension table.

 State id is the new surrogate key created for Store
dimension hierarchy and it has been added as the
foreign key in the Store dimension table.

 Brand id is the new surrogate key created for the
Product dimension hierarchy and it has been added as
the foreign key in the Product dimension table.

 City id is the new surrogate key created for Customer
dimension hierarchy and it has been added as the
foreign key in the Customer dimension table.

Querying A Snowflake Schema
We can generate the same kind of reports for end-users as
that of star schema structures with SnowFlake schemas as
well. But the queries are a bit complicated here.

From the above SnowFlake schema example, we are going to
generate the same query that we have designed during the
Star schema query example.

That is if a business user wants to know how many Novels
and DVDs have been sold in the state of Kerala in January in
2018, you can apply the query as follows on SnowFlake
schema tables.

SELECT pdim.Name Product_Name,
 Sum (sfact.sales_units) Quanity_Sold
FROM Sales sfact
INNER JOIN Product pdim ON sfact.product_id = pdim.product_id
INNER JOIN Store sdim ON sfact.store_id = sdim.store_id
INNER JOIN State stdim ON sdim.state_id = stdim.state_id
INNER JOIN Date ddim ON sfact.date_id = ddim.date_id
INNER JOIN Month mdim ON ddim.month_id = mdim.month_id
WHERE stdim.state = 'Kerala'
 AND mdim.month = 1
 AND ddim.year = 2018
 AND pdim.Name in (‘Novels’, ‘DVDs’)
GROUP BY pdim.Name
Results:

Product_Name Quantity_Sold

Novels 12,702

DVDs 32,919

Points To Remember While Querying Star (or) SnowFlake
Schema Tables
Any query can be designed with the below structure:

SELECT Clause:
 The attributes specified in the select clause are shown in

the query results.
 The Select statement also uses groups to find the

aggregated values and hence we must use group by
clause in the where condition.

FROM Clause:
 All the essential fact tables and dimension tables have to

be chosen as per the context.

WHERE Clause:
 Appropriate dimension attributes are mentioned in the

where clause by joining with the fact table attributes.
Surrogate keys from the dimension tables are joined
with the respective foreign keys from the fact tables to
fix the range of data to be queried. Please refer to the
above-written star schema query example to
understand this. You can also filter data in the from
clause itself if in case you are using inner/outer joins
there, as written in the SnowFlake schema example.

 Dimension attributes are also mentioned as constraints
on data in the where clause.

 By filtering the data with all the above steps,
appropriate data is returned for the reports.

As per the business needs, you can add (or) remove the facts,
dimensions, attributes, and constraints to a star schema (or)
SnowFlake schema query by following the above structure.
You can also add sub-queries (or) merge different query
results to generate data for any complex reports.

3) Galaxy Schema

A galaxy schema is also known as Fact Constellation Schema.
In this schema, multiple fact tables share the same dimension
tables. The arrangement of fact tables and dimension tables
looks like a collection of stars in the Galaxy schema model.

The shared dimensions in this model are known as
Conformed dimensions.

This type of schema is used for sophisticated requirements
and for aggregated fact tables that are more complex to be

supported by the Star schema (or) SnowFlake schema. This
schema is difficult to maintain due to its complexity.

An example of Galaxy Schema is given below.

 Star Cluster Schema

A SnowFlake schema with many dimension tables may need
more complex joins while querying. A star schema with fewer
dimension tables may have more redundancy. Hence, a star
cluster schema came into the picture by combining the
features of the above two schemas.

Star schema is the base to design a star cluster schema and
few essential dimension tables from the star schema are
snowflaked and this, in turn, forms a more stable schema
structure.

An example of a Star Cluster Schema is given below.

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Galaxy-Schema.jpg

Which Is Better Snowflake Schema Or Star Schema?
The data warehouse platform and the BI tools used in your
DW system will play a vital role in deciding the suitable
schema to be designed. Star and SnowFlake are the most
frequently used schemas in DW.

Star schema is preferred if BI tools allow business users to
easily interact with the table structures with simple queries.
The SnowFlake schema is preferred if BI tools are more
complicated for the business users to interact directly with
the table structures due to more joins and complex queries.

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/09/Star-Cluster-Schema.jpg

You can go ahead with the SnowFlake schema either if you
want to save some storage space or if your DW system has
optimized tools to design this schema.

Star Schema Vs Snowflake Schema
Given below are the key differences between Star schema
and SnowFlake schema.

S.No Star Schema Snow Flake Schema

1 Data redundancy is more. Data redundancy is less.

2 Storage space for dimension
tables is more.

Storage space for dimension tables
is comparatively less.

3 Contains de-normalized
dimension tables.

Contains normalized dimension
tables.

4 Single fact table is surrounded by
multiple dimension tables.

Single fact table is surrounded by
multiple hierarchies of dimension
tables.

5 Queries use direct joins between
fact and dimensions to fetch the
data.

Queries use complex joins between
fact and dimensions to fetch the
data.

6 Query execution time is less. Query execution time is more.

7 Anyone can easily understand
and design the schema.

It is tough to understand and design
the schema.

8 Uses top down approach. Uses bottom up approach.

Reference

https://www.softwaretestinghelp.com/data-

warehouse-modeling-star-schema-snowflake-

schema/

	Querying A Star Schema
	#2) SnowFlake Schema
	Querying A Snowflake Schema

	Which Is Better Snowflake Schema Or Star Schema?
	Star Schema Vs Snowflake Schema

