[ecture - 13

1.3.1 Comparison of Computational Complexity with Direct Computation :
‘ First we will calculate the computational complexity for direct DFT calculation. »
A] For direct computation : ‘
According to the definition of DFT we have,.
CN-1 |
X(k) = ¥ x(n)W];n, k=0,1,2 .. N~1 BGY
n=0 ‘
Equation (1) indicates that we have to take, multiplication of x (n) and twiddle factor. Then

we have to add all the terms. Since twiddle factor is complex we need to perform complex
multlphcatlons and complex additions.

Complex multiplications :

. " As given by Equation (1), for one value of ‘k’ multiplication should be performed for all
values of ‘n’. The range of ‘n’ is from 0 to N-1. So for one value of k’; N complex
multiplications are required. Now the range of k is also from k = 0.to k = N-1. The total complex
multiplications are, '

)

Complex additions :
Accordmg to Equation (1), for each value of K we need to add the product terms of

x(n) W . For example let us say N = 4.

3 3 |
Fork=0=X(0) = 3, x(h)Wan= 3 x(n)Wz
’ , n=0 ' =0
X(0) = x(0)W3+x(1)W2+x(2)w2+x(3)wj .0

In Equation (3); four complex multiplications are required and three complex additions are
required. Here we have considered N = 4. Thus for each value of k’; N complex multiplications are
required and ‘N — 1’ complex additions are required. Now the total values of k and ‘N’.

B] Computational complexity using FFT algorithm :

Firstly we will calculate the computatlon complex1ty reqmred for one butterfly. Consider the
general structure of butterﬂy as shown in Fig. G-14.

a o— :1‘ o ¢A=a+WrNb
1
)
Wf
b—% - —oB=a-Wyb

_ Fig. G-14 : Geperal structure of butterfly
‘Here ‘@’ and ‘b’ are inputs and A and B are outputs of butterfly. The outputs are given by,

A a+w; b (4

and B = a—W;b ' (5

M To calculate any output (A or B), we need to multiple injrut b’ by twiddle factor W;I. So

. one complex multiplication is required for one butterfly.

(2) To calculate output ‘A’, one complex addition is required, while to calculate output ‘B’ one
complex subtraction is required as given by Equation (5). But the computational complexity
of addition and subtraction is same. So we can say that for one butterfly two complex

. additions are required.
(3) As shown in Fig. G-10, for 8 point DFT; 4 butterflies are there at each stage. So for ‘N’

N ? -

point DFT, at each stage, —lzi- butterflies are required.

(4) As shown in Fig. G-10; three stages are required to compute 8-point DFT. In general, for ‘N’
point DFT, log, N stages are required.

Complex multiplications :
At each stage there are g butterflies. Total number of stages are log'2 N. And for each

butterfly, one complex multiplication is required.

lex multiplications

(6)

Complex additions :

Total number of stages are log, N. At each stage, g butterflies are required. And for each

butterfly, 2’ complex additions are required. '

Total complex additions = 2x -12\—1_]og2 N

Table G-1 shows comparison of direct DFT computation and computation using FFT
algorithms. ,

Table G-1

* Complex -
Additions
(N2 -N)

12
56.
240

The Table G-1 shows that, by the use of FFT algorithms the number of compléx
multiplications and complex additions are reduced.” So there is tremendous improvement in the
speed.:

1.3.2 In-place Computation to Reduce Memory Size :

Firstly, we will discuss the memory requirement of each butterfly. As shown in Fig. G-11(a);
a butterfly calculates the values of ‘A’ and ‘B’ for the inputs ‘a’ and ‘b’. Remember that ‘a’ and ‘b’
are complex inputs. So two memory locations are required to store any one of the inputs; ‘a’ or ‘b’.
‘One memory location is required to store real part and other memory location is required to store
imaginary part. Now, to store both inputs ‘a’ and 0’; 2 + 2 = 4 memory locations are required.
Now the outputs are computed as follows : -

; .
A = a+WNb(1)
and B = a—WXNb ...(2)

Thus outputs ‘A’ and ‘B’ are calculated by using the values of ‘@’ and ‘b’ stored in the
memory. Now ‘A’ and ‘B’ are also complex numbers; so 2 + 2 = 4 memory locations are required
to store both the outputs- A and B. ’

Once the computation of ‘A’ and ‘B’ is done then, values of ‘a’ and ‘b’ are not required. So
instead of storing ‘A’ and ‘B’ at other memory locations; these values are stored at the same place
where ‘@’ and ‘b’ were stored. That means ‘A’ and ‘B’ are stored in the place of ‘a’ and ‘b’. This is
called as in-place computation. In place computation reduces the memory size.

Memory requirement :

We discuss that ‘four’ memory locations are required for every butterfly to store input and

output values. Now, there are g{ butterflies per stage.‘Thus fo_r each stage,

Now as shown in Fig. G-14, one value of twiddle factor is required to compute A and B. To
store one value of twiddle factor, one memory location is required for each butterfly. Now there are

% butterflies at each stage. Thus for each stage,

required to store

Thus combined. memory required per stage is ‘2N +g’. These many number of memory

locations are required to store input values, output values and the twiddle factor per stage.

1.4 Radix-2 Decimation In Frequency (DIF) FFT Algorithm :

Decimation in frequency stands for splitting the sequences in terms of frequency. That means
we have to split output sequences into smaller subsequences. This decimation is done as follows :
First stage of decimation :

According to the definition of DFT,

N-1 _
kn .
X(k) = Y x(n»)WN (D)
n=0)
. We can divide the summation into two parts as follows :
| N_, N-1
2 kn K
X(k) = Yy X)W+)Y X(n) W ~(2)
N _E » N :
n=0 =3
N-1
. . > kn
Now consider the second summation that means, x(n) WN
..
Putn =n +%; the limits will change as follows :
N N N
whenn—2:>7—n+2> n=
and when n = N - | =>N—l=n+g =N_1_-§-=g_1

N-1 N_,

2 .
2 x(n)W;n -y x[n+%)wk(+2]

N N
=7 n=0
Putting this value in Equation (2) we get,k »
E—l - _N._l N
. . 2 ki 2 . N k(n-i——i)
X(K) = x(n)WN + z x(n+§~J~WN
n=0 ' n=0
kn N kn kN/2
= x(n)WN+ Z x(n+2jWN-WN
n=0 n=0
J-1 -1
kn kN/2 N kn :
X(k) = 2 x(n)WN +WN 2 x(n+2)WN ..(3)
n=0 n=0
_izm
Now we have, - Wy = e N
KN B 21209 <\ R TR
W2 = e N><2=e JTCK=(6]‘It)
N
KN
w2 = (cosm—jsinm)<=(-1-j0)¢
5 K
W2 = (-
2 = (-1
Putting this value in Equation (3) we get,
N N \
_) kn K _I_I kn
‘X(k) = Z x(n)WN+(—1) Z x[+2JWN
n=0 n=0
. Taking the sumration common we get, ‘
| | N, |
27T : 1 &
. N kn
X (k) = ¥ | x(n)+(—1)kx(n+7}iWN ()
L]
n=0

Here we have to split the sequence in terms of frequeicy. So we will split X (k) in terms of
even numbered and odd numbered DFT coefficients. Let X (2r) represents even numbered DFT and
X (7-+ 1) represent odd numbered DFT.

Thus putting k- = 2r in Equation (4), we will get even numbered sequence
N
2rn

-1

) ,
y [x(n)+(—’1)2‘x(n+%HwN

X(2r) =
: n=0
By putting k = 2r + 1, in Equation (4), we will get odd numbered sequence
Sy
- 132+ N (2r+1)n
X(2r+1) = 2 I:x(n)+(1) x[n+2ﬂWN
n=0
Here ‘1’ is .an integer similar to k and it varies from 0 to 5 1.
(-1 =1 |
and (=12 = (1) (=1) ==
Putting these values in Equations (5) and (6) we get,
N 2rn
X(2r) = z {x(n)+x[n+2]:IWN
n=0
N, |
_ _ N (2r+1)n
and X (2r+1) = z {x(n) x[n+2HWN |
n=0
Now consider the term WIZ\]
m
WZm _ (sz
N
But we he W= W
. But we have N = VN2
WZm - (‘N)m: Wm
N N/2 N/2
Now we can write? .
W(2r+1)n - W W W Wn
N ‘ N/2 N

N
Putting these values in Equations (9) and (10) we get
-1 .

X(2t) = 3

n=0

|z

rimes(ss .

-(5)

(6)

(7
(8

(9)

.(10)

.(11)

(12)

(13)

N
AR ;
& Xe1) = o [xmex(ae¥)wm Wt 14
an (2r+1) = 2 Xx(n)—-x|n) Y .-.(14)
n=0
' N
Nowlet, g(n) = x(n)+x n+o -(15)
and h(n) = —x[n+ X ||w" e 15
- (n) = | x(n)—-x|n > N . :
Putting these values in Equations (13) and (14) we get,
X(2r) = » g(n)w;“/z | (A7)
n=0
N o
and X (2r+1) = y h(n)W;n/z (18)
n=0

Note that at this stage we have decimated the sequence of ‘N’ point DFT into two % point
DFTs given by Equations (17) and (18). Let us ¢onsider an example of 8-point DFT. That means .

N = 8. So combining Equations (17) and (18) (that means % = 4) we can obtain N (8 point) point

DFT. This is first stage of decimation. Note that quation (17) indicates 4 (% J point DFT of g(n)
~I-;’Iw)point DFT of h (n). For 8-point DFT Equation (15) becomes,

g(n) = x(n)+x(n+4) ..(19)

Here we are computing ‘4’ point DFT. So range of ‘n’ is n = 0 to n = 3. Putting these values
in Equation (19) we get,

and Equation (18) indicates 4(

Forn=0=g(0)=x(0)+x(4)
Forn=1=g(1)=x(1)+x(5)

' -(20)
Forn=2=g(2)=x(2)+x(6)

Forn=3=g(3)=x(3)+x(7)

Similarly for 8 point DFT Equation (16) becomes,
" h(n) = [x(n)—x(n+4)]W: 21

o

Forn=0'=>.h(0)=[x(O)—X(4)]W

= COo

Forn=1=h(1)=[x(1)-x(5)]1W, | (22)

Forn=2=h(2)=[x(2)-x(6)]1W,

Forn=3=h(3)=[x(3)-x(7)IW, J

Using Equations (20) and (22), and Equations (17) and (18) we can draw the flow graph of
first stage of decimation as shown in Fig. G-15.

Stage 1 A~ 910] e N
x[0] -e > T T ————oX[0]
‘ \ /'\/ gl1] - N oint
X[1]) > i 790'” ———p——0 X[2] From
gl2] DFT > Equation
x[2] (@point) [——oXI4 (7
o p——p——oX[6]
—" :) o X[1] 3
' %point > ~oX[3] From
DFT B
(4-point) XBl
- p—»—oX[T]

Fig. G-15 : First stage of decimation

Second stage of décimation :

In the first stage of decimation we have used 4-point DFT. We can further decimate the
sequence by using 2-point DFT. The second stage of decimation is shown in Fig. G-16.

This is similar to DIT-FFT.

Stage 1 ' Stage 2

— X[0}

X[0] o »(* —— N
\ ol1] / gPort |
x{1] + »(+ . DFT L__ox4)
0 ‘
x[2] o WS i 1—oX2]

N .

2 Nooint |
1

X[3] AN Ty N TJ,._ L DFT L oxi6]

N V‘v’v W - ,
R e VAN —¢ N X
X[5] oty .* e - Z‘ %OFI? v;—oX[5]

~ 0

6] oL Db T T —ox
i Wy g e W, s

e X 4 . 2 8. .

X[7] o - >()—> —(D—> - DFT L oxi7]

Fig. G-16 : Second stage of decimation

Third stage of decimation :

In the second stage of decimation we have used 2-point DFT. So further decimation is not
possible. Now we will use a butterfly structure to obtain 2-point DFT. This butterfly is same as
shown in Fig. G-14. Thus the total flow graph for 8 point DIF-FFT is shown in Fig. G-17.

Stage 1 Stage 2 Stage 3

0 X[2]
X[3] v‘%e“- > > 0 X[6]
x[4 AA‘ »—{ + »-{ + o X[1
[S >3 5 oXi
XI5 NN A »(+ Db o X5
5] O > 5]
x[6] & (D> e Oy >+ o X[3]
x[7] & —-(+) \=st > s+ W28 = e X[7]
-1 WB 1 8 -1

Fig. G-17 : Total flow graph for 8-point DIF-FFT

This flow graph is similar to the flow graph of DIF-FFT but it is in the opposite direction.
Note that here input x (n) is in sequence but output is shuffled. Similar to DIT-FFT there are
log, N = log, 8 = 3 stages. :

The computational complexity and the memory requirement is same as that of DIT-FFT.

