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ilters are a basic component of all signal processing and 
telecommunication systems. The primary functions of a filter are one or 
more of the followings: (a) to confine a signal into a prescribed frequency 

band or channel for example as in anti-aliasing filter or a radio/tv channel 
selector, (b) to decompose a signal into two or more sub-band signals for sub-
band signal processing, for example in music coding, (c) to modify the 
frequency spectrum of a signal, for example in audio graphic equalizers, and (d) 
to model the input-output relation of a system such as a mobile communication 
channel, voice production, musical instruments, telephone line echo, and room 
acoustics.  

  In this chapter we introduce the general form of the equation for a linear 
time-invariant filter and consider the various methods of description of a filter 
in time and frequency domains. We study different filter forms and structures 
and the design of low-pass filters, band-pass filters, band-stop filters and filter 
banks. We consider several applications of filters such as in audio graphic 
equalizers, noise reduction filters in Dolby systems, image deblurring, and 
image edge emphasis.  
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4.1 Introduction 
Filters are widely employed in signal processing and communication systems in 
applications such as channel equalization, noise reduction, radar, audio 
processing, video processing, biomedical signal processing, and analysis of 
economic and financial data. For example in a radio receiver band-pass filters, 
or tuners, are used to extract the signals from a radio channel. In an audio 
graphic equalizer the input signal is filtered into a number of sub-band signals 
and the gain for each sub-band can be varied manually with a set of controls to 
change the perceived audio sensation. In a Dolby system pre-filtering and post-
filtering are used to minimize the effect of noise. In hi-fi audio a compensating 
filter may be included in the preamplifier to compensate for the non-ideal 
frequency-response characteristics of the speakers. Filters are also used to 
create perceptual audio-visual effects for music, films and in broadcast studios.  

  The primary functions of filters are one of the followings:  

(a) To confine a signal into a prescribed frequency band as in low-pass, 
high-pass, and band-pass filters. 

(b) To decompose a signal into two or more sub-bands as in filter-banks, 
graphic equalizers, sub-band coders, frequency multiplexers.  

(c) To modify the frequency spectrum of a signal as in telephone channel 
equalization and audio graphic equalizers.  

(d) To model the input-output relationship of a system such as 
telecommunication channels, human vocal tract, and music synthesizers.  

Depending on the form of the filter equation and the structure of 
implementation, filters may be broadly classified into the following classes: 

(a) Linear filters versus nonlinear filters. 

(b) Time-invariant filters versus time-varying filters.  

(c) Adaptive filters versus non-adaptive filters. 

(d) Recursive versus non-recursive filters.  

(e) Direct-form, cascade-form, parallel-form and lattice structures. 

In this chapter we are mainly concerned with linear time-invariant (LTI) filters. 
These are a class of filters whose output is a linear combination of the input and 
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whose coefficients do not vary with time. Time-varying and adaptive filters are 
considered in later chapters. 

 

4.1.1 Alternative Methods for Description of Filters 
Filters can be described using the following time or frequency domain methods: 

(a) Time domain input-output relationship. As described in section 4.2 a 
difference equation is used to describe the output of a discrete-time filter in 
terms of a weighted combination of the input and previous output samples. 
For example a first-order filter may have the following difference equation 

)()1()( mxmyamy +−=         (4.1) 

where x(m) is the filter input, y(m) is the filter output and a is the filter    
coefficient.  

(b) Impulse Response. A filter can be described in terms of its response to an 
impulse input. For example the response of the filter of Eq. (4.1) to a 
discrete-time impulse input at m=0 is 

mamy =)(            m=0, 1, 2, …       (4.2) 

y(m) = …,,,,,1 432 aaaaa m =  for m=0,1,2,3, 4 ... and it is assumed y(-1)=0. 

Impulse response is useful because: (i) any signal can be viewed as the sum 
of a number of shifted and scaled impulses, hence the response a linear filter 
to a signal is the sum of the responses to all the impulses that constitute the 
signal, (ii) an impulse input contains all frequencies with equal energy, and 
hence it excites a filter at all frequencies and (iii) impulse response and 
frequency response are Fourier transform pairs. 

(c) Transfer Function, Poles and Zeros. The transfer function of a digital filter 
H(z) is the ratio of the z-transforms of the filter output and input given by 
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 For example the transfer function of the filter of Eq. (4.1) is given by 
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A useful method of gaining insight into the behavior of a filter is the pole-
zero description of a filter. As described in Sec. X poles and zeros are the 
roots of the denominator and numerator of the transfer function 
respectively. 

(d) Frequency Response. The frequency response of a filter describes how the 
filter alters the magnitude and phase of the input signal frequencies. The 
frequency response of a filter can be obtained by taking the Fourier 
transform of the impulse response of the filter, or by simple substitution of 
the frequency variable ωje for the z variable ωjez =  in the z-transfer 
function as 
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 The frequency response of a filter is a complex variable and can be described 
in terms of the filter magnitude response and the phase response of the filter. 

 

4.2 Linear Time-Invariant Digital Filters   
Linear time-invariant (LTI) filters are a class of filters whose output is a linear 
combination of the input signal samples and whose coefficients do not vary 
with time. The linear property entails that the filter response to a weighted sum 
of a number of signals, is the weighted sum of the filter responses to the 
individual signals. This is the principle of superposition. The term time-
invariant implies that the filter coefficients and hence its frequency response is 
fixed and does not vary with time.  

    In the time domain the input-output relationship of a discrete-time linear 
filter is given by the following linear difference equation: 

where {ak, bk} are the filter coefficients, and the output y(m) is a linear 
combination of the previous N output samples [y(m−1),…, y(m−N)], the present 
input sample x(m) and the previous M input samples  [x(m−1),…, x(m−M)]. The 
characteristic of a filter is completely determined by its coefficients {ak, bk}. 
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For a time-invariant filter the coefficients {ak, bk} are constants calculated to 
obtain a specified frequency response.  

  The filter transfer function, obtained by taking the z-transform of the 
difference equation (4.6), is given by: 

The frequency response of this filter can be obtained from Eq. (4.7) by 
substituting the frequency variable ωje for the z variable, ω= jez , as 
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Since from Fourier transform a signal is a weighted combination of a number of 
sine waves, it follows, from superposition principle, that in frequency domain 
linear filtering can be viewed as linear combination of the frequency 
constituents of the input multiplied by the frequency response of the signal. 

Filter Order – The order of a discrete-time filter is the highest discrete-time 
delay used in the input-output equation of the filter. For Example, in Equations 
(4.6 or 4.7) the filter order is the larger of the values of N or M. For continuous-
time filters the filter order is the order of the highest differential term used in 
the input-output equation of the filter. 

 

4.3  Recursive and non-Recursive Filters 
Fig. 4.1 shows a block diagram implementation of the linear time-invariant 
filter Eq. (4.1).  The transfer function of the filter in Eq. (4.7) is the ratio of two 
polynomials in the variable z and may be written in a cascade form as 
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where H1(z) is the transfer function of a feed-forward, all-zero, filter given by 
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and H2(z) is the transfer function of a feedback, all-pole, recursive filter given 
by 

∑
=

−−

=
N

k

k
k za

zH

1

2

1

1)(             (4.11) 

z – 1

x(m)
b0

b1

a2

z –1

a1

b2

z –1

z –1

z –1

bM–1

aN

aN – 1

bM

z – 1

y(m)

...
...

∑
=

−
M

k
k kmxb

0

)( ∑
=

−
N

k
k kmya

1

)(

Non-recursive
all-zero part

Recursive 
all-pole part  

Figure 4.1 Illustration of a direct-form pole-zero IIR filter showing the output is 
composed of the sum of two vector products: a weighted combination of the input 
samples [b0, …, bM][x(m), …, x(M-1)]T plus a weighted combination of the output 
feedback [a1, …, aN][y(m-1), …, y(m-N)]T. T denotes transpose. 
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Figure 4.2 Direct-form Finite Impulse Response (FIR) filter. 

 
4.3.1 Non-Recursive or Finite Impulse Response (FIR) Filters 

A non-recursive filter has no feedback and its input-output relation is given by   
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As shown in Fig 4.2 the output y(m) of a non-recursive filter is a function only 
of the input signal x(m). The response of such a filter to an impulse consists of a 
finite sequence of M+1 samples, where M is the filter order. Hence, the filter is 
known as a Finite-Duration Impulse Response (FIR) filter. Other names for a 
non-recursive filter include all-zero filter, feed-forward filter or moving average 
(MA) filter a term usually used in statistical signal processing literature. 

  
4.3.2 Recursive or Infinite Impulse Response (IIR) Filters 
A recursive filter has feedback from output to input, and in general its output is 
a function of the previous output samples and the present and past input 
samples as described by the following equation 
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Fig 4.1 shows a direct form implementation of Eq. (4.13). In theory, when a 
recursive filter is excited by an impulse, the output persists forever. Thus a 
recursive filter is also known as an Infinite Duration Impulse Response (IIR) 
filter. Other names for an IIR filter include feedback filters, pole-zero filters and 



8 Chapter 5 Digital Filters 
 

auto-regressive-moving-average (ARMA) filter a term usually used in statistical 
signal processing literature.  

   A discrete-time IIR filter has a z-domain transfer function that is the ratio 
of two z-transform polynomials as expressed in Eq. (4.7); it has a number of 
poles corresponding to the roots of the denominator polynomial and it may also 
have a number of zeros corresponding to the roots of the numerator polynomial.  

  The main difference between IIR filters and FIR filters is that an IIR filter 
is more compact in that it can usually achieve a prescribed frequency response 
with a smaller number of coefficients than an FIR filter. A smaller number of 
filter coefficients imply less storage requirements and faster calculation and a 
higher throughput. Therefore, generally IIR filters are more efficient in memory 
and computational requirements than FIR filters. However, it must be noted that 
an FIR filter is always stable, whereas an IIR filter can become unstable (for 
example if the poles of the IIR filter are outside the unit circle) and care must be 
taken in design of IIR filters to ensure stability.  

  Fig. 4.3 shows a particular case of an IIR filter when the output is a 
function of N previous output samples and the present input sample given by  
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The transfer function of this filter is given by 
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Figure 4.3 Direct-form all-pole IIR filter. 
































