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ilters are a basic component of all signal processing and

telecommunication systems. The primary functions of a filter are one or

more of the followings: (a) to confine a signal into a prescribed frequency
band or channel for example as in anti-aliasing filter or a radio/tv channel
selector, (b) to decompose a signal into two or more sub-band signals for sub-
band signal processing, for example in music coding, (c) to modify the
frequency spectrum of a signal, for example in audio graphic equalizers, and (d)
to model the input-output relation of a system such as a mobile communication
channel, voice production, musical instruments, telephone line echo, and room
acoustics.

In this chapter we introduce the general form of the equation for a linear
time-invariant filter and consider the various methods of description of a filter
in time and frequency domains. We study different filter forms and structures
and the design of low-pass filters, band-pass filters, band-stop filters and filter
banks. We consider several applications of filters such as in audio graphic
equalizers, noise reduction filters in Dolby systems, image deblurring, and
image edge emphasis.



4.1 Introduction

Filters are widely employed in signal processing and communication systems in
applications such as channel equalization, noise reduction, radar, audio
processing, video processing, biomedical signal processing, and analysis of
economic and financial data. For example in a radio receiver band-pass filters,
or tuners, are used to extract the signals from a radio channel. In an audio
graphic equalizer the input signal is filtered into a number of sub-band signals
and the gain for each sub-band can be varied manually with a set of controls to
change the perceived audio sensation. In a Dolby system pre-filtering and post-
filtering are used to minimize the effect of noise. In hi-fi audio a compensating
filter may be included in the preamplifier to compensate for the non-ideal
frequency-response characteristics of the speakers. Filters are also used to
create perceptual audio-visual effects for music, films and in broadcast studios.

The primary functions of filters are one of the followings:

(a) To confine a signal into a prescribed frequency band as in low-pass,
high-pass, and band-pass filters.

(b) To decompose a signal into two or more sub-bands as in filter-banks,
graphic equalizers, sub-band coders, frequency multiplexers.

(c) To modify the frequency spectrum of a signal as in telephone channel
equalization and audio graphic equalizers.

(d) To model the input-output relationship of a system such as
telecommunication channels, human vocal tract, and music synthesizers.

Depending on the form of the filter equation and the structure of
implementation, filters may be broadly classified into the following classes:

(a) Linear filters versus nonlinear filters.

(b) Time-invariant filters versus time-varying filters.

(c) Adaptive filters versus non-adaptive filters.

(d) Recursive versus non-recursive filters.

(e) Direct-form, cascade-form, parallel-form and lattice structures.

In this chapter we are mainly concerned with linear time-invariant (LTI) filters.
These are a class of filters whose output is a linear combination of the input and
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whose coefficients do not vary with time. Time-varying and adaptive filters are
considered in later chapters.

4.1.1 Alternative Methods for Description of Filters
Filters can be described using the following time or frequency domain methods:

(@) Time domain input-output relationship. As described in section 4.2 a
difference equation is used to describe the output of a discrete-time filter in
terms of a weighted combination of the input and previous output samples.
For example a first-order filter may have the following difference equation

y(m)=ay(m-1)+x(m) (4.1)

where x(m) is the filter input, y(m) is the filter output and a is the filter
coefficient.

(b) Impulse Response. A filter can be described in terms of its response to an
impulse input. For example the response of the filter of Eq. (4.1) to a
discrete-time impulse input at m=0 is

y(m)=a" m=0, 1, 2, ... (4.2)
y(m)=a™=1,a,a%*a% a‘,... form=0,1,2,3, 4 ... and it is assumed y(-1)=0.

Impulse response is useful because: (i) any signal can be viewed as the sum
of a number of shifted and scaled impulses, hence the response a linear filter
to a signal is the sum of the responses to all the impulses that constitute the
signal, (ii) an impulse input contains all frequencies with equal energy, and
hence it excites a filter at all frequencies and (iii) impulse response and
frequency response are Fourier transform pairs.

(c) Transfer Function, Poles and Zeros. The transfer function of a digital filter
H(z) is the ratio of the z-transforms of the filter output and input given by

Y(2)
H(z)=——= 4.3
O (43)
For example the transfer function of the filter of Eq. (4.1) is given by
H(z)= 1 (4.9)

1-az?t



A useful method of gaining insight into the behavior of a filter is the pole-
zero description of a filter. As described in Sec. X poles and zeros are the
roots of the denominator and numerator of the transfer function
respectively.

(d) Frequency Response. The frequency response of a filter describes how the
filter alters the magnitude and phase of the input signal frequencies. The
frequency response of a filter can be obtained by taking the Fourier
transform of the impulse response of the filter, or by simple substitution of
the frequency variable e!”for the z variable z=e! in the z-transfer
function as

: jo
H(z:eJ“’):Y(e—.) (4.5)
X (e1?)
The frequency response of a filter is a complex variable and can be described
in terms of the filter magnitude response and the phase response of the filter.

4.2 Linear Time-Invariant Digital Filters

Linear time-invariant (LTI) filters are a class of filters whose output is a linear
combination of the input signal samples and whose coefficients do not vary
with time. The linear property entails that the filter response to a weighted sum
of a number of signals, is the weighted sum of the filter responses to the
individual signals. This is the principle of superposition. The term time-
invariant implies that the filter coefficients and hence its frequency response is
fixed and does not vary with time.

In the time domain the input-output relationship of a discrete-time linear
filter is given by the following linear difference equation:

N M
y(m)=>a,y(m-k)+ > b x(m-k) (4.6)
k=1 k=0

where {ax, by} are the filter coefficients, and the output y(m) is a linear
combination of the previous N output samples [y(m-1),..., y(m—N)], the present
input sample x(m) and the previous M input samples [x(m-1),..., X(m-M)]. The
characteristic of a filter is completely determined by its coefficients {ax, bk}



Sec. 4.2 Linear Time Invariant Filters 5

For a time-invariant filter the coefficients {ax, bk} are constants calculated to
obtain a specified frequency response.

The filter transfer function, obtained by taking the z-transform of the
difference equation (4.6), is given by:

H(z)=—*0 (4.7)

The frequency response of this filter can be obtained from Eq. (4.7) by
substituting the frequency variable e for the z variable, z = e, as

M .
Z bke—](uk
joy_ k=0

1-) a e lek
k=1

(4.8)

Since from Fourier transform a signal is a weighted combination of a number of
sine waves, it follows, from superposition principle, that in frequency domain
linear filtering can be viewed as linear combination of the frequency
constituents of the input multiplied by the frequency response of the signal.

Filter Order — The order of a discrete-time filter is the highest discrete-time
delay used in the input-output equation of the filter. For Example, in Equations
(4.6 or 4.7) the filter order is the larger of the values of N or M. For continuous-
time filters the filter order is the order of the highest differential term used in
the input-output equation of the filter.

4.3 Recursive and non-Recursive Filters

Fig. 4.1 shows a block diagram implementation of the linear time-invariant
filter Eq. (4.1). The transfer function of the filter in Eq. (4.7) is the ratio of two
polynomials in the variable z and may be written in a cascade form as

H(2)=H.(2)H2(2) (4.9)



where H;(z) is the transfer function of a feed-forward, all-zero, filter given by

Hl(z)%bkz‘k (4.10)
k=0

and Ha(z) is the transfer function of a feedback, all-pole, recursive filter given
by
(4.11)

x(m) > y(m)

Non-recursive Recursive
all-zero part all-pole part

Figure 4.1 lllustration of a direct-form pole-zero IIR filter showing the output is
composed of the sum of two vector products: a weighted combination of the input
samples [bo, ..., byl[x(m), ..., x(M-1)]" plus a weighted combination of the output
feedback [ay, ..., ayJ[y(m-1), ..., y(m-N)]". T denotes transpose.
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Figure 4.2 Direct-form Finite Impulse Response (FIR) filter.

4.3.1 Non-Recursive or Finite Impulse Response (FIR) Filters
A non-recursive filter has no feedback and its input-output relation is given by

M
y(m)=> by x(m —k) (4.12)
k=0

As shown in Fig 4.2 the output y(m) of a non-recursive filter is a function only
of the input signal x(m). The response of such a filter to an impulse consists of a
finite sequence of M+1 samples, where M is the filter order. Hence, the filter is
known as a Finite-Duration Impulse Response (FIR) filter. Other names for a
non-recursive filter include all-zero filter, feed-forward filter or moving average
(MA) filter a term usually used in statistical signal processing literature.

4.3.2 Recursive or Infinite Impulse Response (lIR) Filters

A recursive filter has feedback from output to input, and in general its output is
a function of the previous output samples and the present and past input
samples as described by the following equation

N M
y(m)=>"a, y(m—k)+> by x(m—Kk) (4.13)
k=1 k=0

Fig 4.1 shows a direct form implementation of Eq. (4.13). In theory, when a
recursive filter is excited by an impulse, the output persists forever. Thus a
recursive filter is also known as an Infinite Duration Impulse Response (1IR)
filter. Other names for an IR filter include feedback filters, pole-zero filters and



auto-regressive-moving-average (ARMA) filter a term usually used in statistical
signal processing literature.

A discrete-time IIR filter has a z-domain transfer function that is the ratio
of two z-transform polynomials as expressed in Eq. (4.7); it has a number of
poles corresponding to the roots of the denominator polynomial and it may also
have a number of zeros corresponding to the roots of the numerator polynomial.

The main difference between IIR filters and FIR filters is that an 1IR filter
is more compact in that it can usually achieve a prescribed frequency response
with a smaller number of coefficients than an FIR filter. A smaller number of
filter coefficients imply less storage requirements and faster calculation and a
higher throughput. Therefore, generally IIR filters are more efficient in memory
and computational requirements than FIR filters. However, it must be noted that
an FIR filter is always stable, whereas an IIR filter can become unstable (for
example if the poles of the IIR filter are outside the unit circle) and care must be
taken in design of IR filters to ensure stability.

Fig. 4.3 shows a particular case of an IIR filter when the output is a
function of N previous output samples and the present input sample given by

N
y(m)=)_a,y(m—k)+g x(m) (4.14)
k=1

The transfer function of this filter is given by

x(m) o—>|>——>€|—> > y(m)
<—<

a;

ay_
aN—lﬁ
a
%%J

Figure 4.3 Direct-form all-pole IR filter.
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1.1 Introduction :

We know that IIR stands for infinite impulse response. Generally IIR systems are recursive
type. A recursive system means; feedback connection is present from output side to the input side.
For the realization of IIR systems present, past, future samples of input and past values of output are
required. For the realization of IIR systems, following structures are used.

1. Direct form structure
2. Cascade form structure
3. Parallel form structire

1.2 Direct Form Stfucture for IIR Systems :

Direct form structure is again divided into two types :
A. Direct form-I structure

B. Direct form-1I structure. .
The general difference equation for discrete time LTI system is given as,

M .
~k
> b Z ’
k=0
H(Z) = N -(1)
-k
1+ Y aZ
. _ k=1
Now let H1 (Z) = Numerator term of Equation (1)
M . . .
. : k. ) .
H(Z) = ) b2Z | (2
k=0
1
And let, H,(Z) = N -(3)
| 1+ Y az*
_ , , - k=1 :
Putting Equations (2) and (3) in Equation (1) we get,
H(Z) =H1(Z)~H2(Z) ’ .4

‘ This equation shows that H (Z ) can be represented as the'cascade connection of Hl (Z) and
' H, (Z) as shown in Fig. I-1(a).
- | HD)

y(n)

x(n) —— ): E

Fig. I-1(a) : Cascade cennection of H (Z)and H,(Z)



We know that H1 (Z) is the transfer function of the numerator term. Numerator always
contain Zeros of the system. So H1 (Z) is called as all zero system. Now HZ(Z) is transfer
function of denominator. Denominator always contain poles of the system. So H,(Z) is called as
all pole system. , '
(A) Direct form-I structure :

The direct form-I structure is obtained by cascading (comiecting in series), the structure for
H1 (Z) and H2 (Z). First we will draw the direct form structure for H1 (Z).

Direct form étructure for H,(Z):

RecallAthe equation of H1 (Z) (Equation (2)). It is,

M | » , .
H(Z) = Y bz S o e(5)

k=0

But we know that, H(Z) = V?Utu?t[[;((zz)) ]]
np

To avoid the confusion we will write,

H1 (Z) = \:([((;)), WhemW(Z)is output of first stage.
W(Z o |
Z) - -k :
= Y b Z .6
xz) = = . - .
k=0 * :
W(Z) _ 0. -1, -2 M
X(Z) - bOZ +blz ‘+bZZ + e _+bMZ
But 70 =1 \ , ' .
W(Z) = bOX(Z)+blZ‘1X(Z)+‘b2'Z‘2X(Z)+..’.{rbMZ‘MX(Z), A7)
Taking inverse Z-transform (IZT) of Equation (7) we get,
y,(n) = byx(n)+b x(n=-1)+b,x(n-2)+...+by,x(n-M) ' (8)

Here bO’ bl’ b2 ... b
shown in Fig. I-1(b).

M are the coefficients. The direct form realization of Equatidn (8) is



Fig. I-1(b) : Direct form realization of H1 ( Z) (All zero system)

‘Direct form structure for H, (Z) :

Recall the equation for H2 (Z). Itis,

1 -
H,(Z) = N | .9
1+ Y az’k
k=1
Output [ Y (Z)]
_ Input [X(Z)]
Now H, (Z) represents second stage of Fig. I-1(a). Input of second stage is the output of

We have, H,(Z) = .(10)

first stage. Thus input of H,(Z) is W(Z) and output of H, (Z) is the output of overall system
which is Y ( Z). Thus Equation (10) becomes, ‘

Y(Z)
H2(Z) = W(z)
Putting this vatue in Equation (9) we get,

Y(Z) _ 1
W(Z) N

1+ Y az "
k=1

N

Y(Z)[ 1+ Y a 275 =wW(Z)

k=1



N

Y(2)+Y(Z)| Y 2 27| = W(Z)
: k=1 :
L N -
Y(Z) = -| X az7"|Y(Z)+W(Z) (11)

. k=1 )
Expanding the summation we- get,

Y(Z) = -[a12“1+a22"2+...+aNz‘N Y(Z)+W(Z)

Y(Z) = -2, 27 'Y(Z)-2,Z7 2 Y (Z) —ayZ N Y(Z)+W(Z) .(12)
Taking IZT of Equation (12) we get, , o

y(n) = -—ay(n-1)-ay(n-2).. —agy(n-N)+w, o -(13)
Here — a, —a, .. —agare the coefficients. ‘ ’ '

The direct form implementation of Equatlon (13) is shown in Fig. I- l(c)

y(n)

Fig. I-1(c) : Direct form realization of H2 (Z) (All pole system)

Here all RH.S. terms of Equation (13) except w (n) are the delayed output terms. Thus this
is a feedback (recursive) connection.

Now direct form - Istructure is obtained by cascading H (Z) and H (Z). Thus direct
form-I realization of IIR system is obtained by connect;mg Fig. I—l(b) and Fig. I- l(c) in series. It is
shown in Fig. I-1(d). .



x(n)

All zero system All pole system

Fig. I-1(d) : Direct form-I realization of IIR system

Computation complexity :

The computational complexity of direct form-I structure is as follows :

1. . Number of multiplications = M+ N + 1
2. Number of additions = M+ N
3. Number of memory locations = M+ N + 1.

(B) Direct form-ll structure :

Observe Fig. I-1(d). Here, first block represents all zero system an¢ second block represents
all pole system. Thus, in direct form- I structure ; zeros of H(Z) are realised first and the poles of
H (Z) are realized second.

Now we are studying these structures for LTI (linear time invariant) systems. Since the
systems are linear we can interchange the positions of H,(Z) and H, (Z). This will give us the

direct form-II structure. Thus in direct form-II structure; poles are realised first and zeros second.

We have, H(Z) = H (Z)-H,(Z) (1)
| We will interchange thebequations of H1 (Z) and H2 (Z ) ‘
H,(Z) = + O
1+ Y az7%
k=1
M
\ and H,(Z) = ) bz * (3



The cascade connection of H (Z )'= H1 (Z)- H2 (Z) is shown in Fig. I-2(a).

x(n)o-

Fig. I-2(a) : Decompositioh of direct form-II realization
Here U ( Z ) represents the output of first block.
(1)  All pole system : '

Output _ U(Z)

Wgcanwnte, HI(Z)= Tnput _X(Z)
Comparing Equations (2) and (3) we get,
' U(z) _ 1
X(Z) N
1+ z akZ-k
k=1

U(Z)

il

N
X(2)-U(z)| ¥ az7*
k=1

Expanding the summation we get,

u(z) = X(Z)—alz—lU(Z)—aZZ"ZU(Z)....-—a.NZ'NU(Z)

Taking IZT of Equation (5) we get,
u(n) = x(n)—alx(n—l'")~a2x(n—2) ..... -agx(n-N)

The direct form implémentation of Equation (6) is shown in Fig. I-2(b).

@

..(5)

.(6)



Fig. I-2(b) : Direct form realization of H1 (Z') (Al pole system)

2) Al zero system : -
As shown in Fig. I-2(a), the output of second stage is the overall output of the system which
is Y (Z). While input to this stage is the output of first stage, which is U (Z). Thus we can write,

H,(7) = Qutput _ Y(Z) I
’ ‘H'Z'(Z) Input — U(2z) M
Comparing Equations (3) and (7) we get,
M. .
Y(Z) _ -k ‘ ‘
Uz " 2 bzk . )
k=0

Y(Z).

]

M
3. -k
U(z) > b Z
k=0 .
Expanding the summation we get, _
' _ 0 -1 -2 -M
Y(Z) = U(Z)[bOZ +0, 27 4b, 2724 4 7 ]
Here 7° = 1; multiplying by U (Z) we get,
' Y(Z) = bOU(Z)+b1‘Z—lU(Z)+b22_2U(Z)+...+bMZ'MU(Z)...(9)

Taking IZT of Equation (9) we get,
y(n) = bou(n)+b1u(n'—1)+b2u(n—2)+...+bmu(n—M) ..(10)

- The direct form implementation of Equation (10) is shown in Fig. 1-2(c).



u(n) — —p-

B
T
y
o
k:
[ =4
——
7
L

bpu(n-Mm)
Fig. I-2(c) : Direct form realization of H2 ( Z) (All zero system)

Now direct form-II structure is obtained by cascading H] (Z) and H, (Z). That means it is
obtained by connecting Fig. I-2(b) and Fig. I-2(c) in series. This is shown in Fig. I-2(d).

All pole system All zero system

Fig. I-2(d) : Direct form-II realization of IIR system

In Fig. I-2(d), separate delay elements are used. Generally common delay elements are used
in direct form-II structure. By using common delays, direct form II structure is drawn as shown in
Fig. I-2(e).

Note that here we have considered N = M.



Fig. 1-2(e) : Direct form-II realization using common delay elements
Computation complexity : '

The computational complexity for direct form-II realization of IIR is as follows :

1. Number of multiplications = M+ N+ 1.
2, Number of additions = M +N.
3. The number of delay clements are reduced in direct form-II structure, compared to direct

form-I structure. That means the memory locations are reduced. The memory locations
required for direct form-II structure are {M, N }.

Why these structure are called as direct form structures ?

The direct form-I and direct form-II structures are obtained directly from the corresponding
transfer functions without any rearrangements. So these structure is called as direct form structures.

Advantage : The only advantage of direct form realization is its implementation which is easy.
We prefer direct form-II structure compared to direct form-I structure; because less memory
locations are required. , _ ' :
Disadvantage : Both direct form structures are sensitive to the effects of quantization errors in
the coefficients. So in the practical applications ; these structures are not preferred. '

1.3 Cascade Form Structures :

To obtain the cascade form realization; the numerator and denominator of given transfer
function H (Z) is factored into the product of second order terms.
Then the total transfer function H ( Z) is expressed as,

H(Z) = H, (Z)-H,(Z)...H (Z) - ' (D)
Here H1 (2), Hé(Z) Hk(Z) are second order polynomials: Then each subtransfer

function (H1 ,H2 ... etc.) can be realised using direct form-I or-direct form-II structures. The total

transfer function is obtained by connecting all second order .subsystems. in series as shown in
Fig. I-3(a). ‘



Yi(n) = y(n)

x(n) = x4(n) y1(n) 2(n) = Yi-1(n)

1 xg(n) xn) |

y

Fig. 1-3(a) : Cascade form realization

Now we have the ‘gener.al difference equation for discrete time LTI system given by,
v M :

«.(2)

Since H1 (Z), ‘HZ(Z) are second order polynomials ; we can write the second order

differential equation for H (Z) by putting M = N = 2 in Equation (2).

2.
-k
X bhZ
k=0
H(Z) = —
1+ Y az™*
k=1
0 -1 -2
b, Z’+b,Z" ' +b,Z
H(Z) = 1 -2
l+a,Z "+a.,Z
1 2!
But Z° =1
b +b.Z '+b.Z272
0 1 2
H (Z) = (3

1+a,Z ' +a,27>

We can obtain direct form-II structure of Equation (3), similar to Fig. I-2(e). Now, Fig. I-2(e)
shows the direct form-II realization for N = M ; that means for M stages. In this case we have
second order equation. So by -using Fig. I-2(e) we can draw the direct form structure for
Equation (3) by putting M = N = 2. This structure is shown in Fig. I-3(b)..

. 1 bo
x(n) > >
b
—a by

Fig. 1-3(b) : Direct form-II realization of second order subsysteni



P

So all such subsys‘tems should be connected in series to obtain the cascade form realization of
IIR system. ‘ .

1.4 Parallel Form ‘StrUcture :

A We have the general difference equation for IR systems given by,

M
\ -k
X b2
k=0
H(Z) = ——¢ (D)
-k
1+ Y az
k=1
By using partial fraction expansion we can express overall trainsfer function H (Z) as,

H(Z) =C+H1(Z)+H2(Z)+...+Hk(Z) ' -2

Here ‘C’ is constant and H1 (Z), H2 (Z2).. Hk (Z) are second order subsystems. The
general block schematic of parallel form realization structure for IIR system is as shown in Fig. I-4.
C

A\ 4
+

A 4
O

Fig. I-4 : Parallel form realization for IIR system

Here Hl (Z ) H2 (Z)...etc. can be realised by using direct form-I or direct form-II structures.

Then all these structures are connected in parallel as shown in Fig. I-4 to obtain the paralle] form
* realization for IIR system.

Applications :

The parallel form realization is generally used for-high speed filtering applications. Since this
is a parallel connection ; the processing of filtering operation is performed parallely.

1.5 Representation of Structures using Signal Flow Graphs :

Basically a signal flow graph is graphical representation of the block diagram structure. Both
the signal flow graph and the block diagram structure provide the same information.
For example, we will consider the second order subsystem. We know that the transfer function of



second order supsystem 1s given by,
' ) -1 -2
b0 + b1 Z "+ b2 Z

H(Z) = )

1+a Z—1+a 2_2

~ We have already drawn the direct form-II realization of second order subsystem (Fxg H- 7(b))
For the reference it is again drawn as shown in Fig. I-5(a) and its signal flow graph representation is
shown in Fig. I-5(b).

Adder node Branching node

1 by y(n) x(n)
> » »(. y(n)
-y b, T

(@ ' ' ®
Fig. I-5 : Direct form-II realization and its signal flow graph

How to draw a signal flow graph ?
. From the given block diagram reahzatlon it is simple to draw the signal flow graph. The
procedure is as follows :

1. Replace all adders by adder nodes
Whenever there are different branches ; draw the branching node

2

3. Keep the directions of arrows and the corresponding coefficients as it is.

4 Replace every delay element by simple transmittance branch. For that branch, write Z ™
indicate the delay operation.

There is 1:1 correspondence between the éignal flow graph and block diagram representation.
And the signal flow graph representation is much simple compared to block diagram representation.

1.6 Transposed Structures :

If two digital filter structures have the same transfer function then they are called as
equivalent structures. By using the transpose operation, we can obtain equivalent structure from a
given realization structure. ‘

Transposition or flow graph reversal theorem : :

If we reverse the directions of all branch transmittances and mterchange input and output in
the flow graph (or given structure) then the system transfer function remains unchanged. It is called
as transposition theorem.

Procedure to obtain transposed structure and transposed flow graph

1. Reverse all 51gnal flow graph directions.
2. Change branching nodes into adders and vice-versa.
3. Interchange input and output. '

The transposed structure for second order subsystem is shown in F1g I6(a) and the
corresponding transposed flow graph is shown in Fig. I-6(b).
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(b) Transposed flow graph for second order subsystem
Fig. I-6 '

1.7 Feedback in lIR Systems :

We have studied that, in case of IIR systems, feedback connection is present. That means
output signal is fed back to the input side. This is also called as a loop. Generally this feedback
connection is required to generate infinitely long impulse responses.

. First we will consider a system where
feedback is not used. Consider the difference  x(n) »
equation, ' )

‘y(n)= x(n)+x(n—l)+x(n.——2) (D X(n—1)“;‘w

_ The block diagram representing Equation (1) A
is shown in Fig. I-7(a). A X(n-2) —

Fig. I-7(a)

As shown in Fig. I-7(a), a feedback path is not present. All the signals simply travels in the
forward direction towards output. In this case an impulse response is no longer than. the total
number of delays in the system. Thus we can conclude that, if loops (feedback connections) are not
present then the system function has only zeros (except for pole at z = 0). To prove this, we will
.take Z transform of Equation (1), :

Y(Z) = X(2)+27'X(2)+2"%X(Z)

Y(Z)

X(Z)[1+z2 vz



YZ) _H(z)y=142""4272

X(Z)
Multiplying and dividing by 7? we get,
4 Z°+7+1 :

Equatlon (2) shows that the system has only zeros except the poles at origin. The poles are
not present at any other locations.

Now consider a system with feedback connection. Let us consider a difference equation,
y(n) =2y(n-1)+x(n) -(3)

Equation (3) indicates that, the delayed output, y.(n—1) is multiplied by constant value ‘2’
and it is added with input x (n). The block diagram representation and signal flow graph is shown
in Fig. I-7(b).

x(n)

. sy xm) —o ———o—y(n)

< —Je— y(n-1) . e

Fig. I-7(b)

If input is an impulse sequence then the single input sample continually recirculates in the
feedback loop. Every time an amplitude increases due to multiplication by coustant 2.

Now taking Z transform of both sides of Equation (3) we get

Y(Z) =227 'Y(Z)+X(Z)

Y(Z)-2Z2"'Y(Z) = X(2Z)
CY(Z)[1-2Z711 = X(2Z)
YD) _yigy o]
T X(Z) 1-2771
Z
H(Z) = —— ..(4
(2) = ;=5 | @
Impulse response h(n) is obtained by taking inverse Z transform of Equation (4).
h(n) = 2" (n) (5

Equation (5) indicates vthat, because of the feedback connection an infinitely long impulse
response is obtained.

Equation (4) indicates that the system function has a pole other than origin. This indicates the
presence of feedback loop. But a network with feedback connection will not produce mﬁmtely long
impulse response if the poles of system function cancels w1th Zeros.





