Unit-2 Lecture-7
The Theory of Consumer Behaviour

Consumer is assumed to be rational. Given hits income and prices of the commodities in the market, he will plan his expenditure in such a way that it gives him maximum possible satisfaction or letility. Utility is the want satisfying power of a commodity.

There are two approaches which are used to explain the behaviour of the consumer in the market, one is cardinal approach and the other is 'ordinal cosroach'.
While the cardinalist school postulated that utility can be measnered, the ordinalist school believed that utility is not meascerable. According to them preference of the consumers can be ranked.

The cardinal theory is based on a number of assumptions.
(1) Consumer is rational
(2) Utility can be measured
(3) Marginal utility of money is constant.
(4) The marginal retility gained from successive units goes on diminishing.

Lets now trey to understand the concept of marginal retility (MU). $M U x$ is the marginal utility of the commodity x.
el
Let x is apple
A consumer is hungry and he is given apples to satisfy his hunger.

TU is the sum total of all the utility or satisfaction that the consumer gets after consuming ant the cepples.

$$
T U=f\left(x_{1}, x_{2}, x_{3} \cdots x_{n}\right)
$$

Unit TU MU

In the above table you can clearly see that Marginal utility (MUn) is the change in total utility $\left(T U_{x}\right)$ The difference between TU \& MU er -
$T U$ is the sum total of utility from consumption of all the units of x MUn is the utility of individual units of x.
The above table shows that when a consumer consumes more \& more of a product, the marginal utility of successive units of the product goes on decreasing. This is called
'The law of diminishing marginal utility'. The graphs below show the relation e between TU and MU.

TU

TU

MU is the change in total utility.
Now let's try to understand how does a consumer attain equiti brium when retility's measured in numbers.

Let us assume that the consumer is buying a single commodity x.

$$
T U_{x}=f\left(q_{x}\right)
$$

Maximise
Px \rightarrow price of x
$q_{x \rightarrow \text { quantity }}$
of x.
$\mathrm{P}_{x} \mathrm{q}_{x} \rightarrow$ coovsumeris expenditure on x.

$$
\frac{\partial T U_{x}}{\partial g_{x}}=M U_{x}
$$

So $M \cup_{x}-P_{x}=0$
or $M U_{x}=P_{x}$
When $M U_{x}>P_{x}$, the consumer can purchase more of $x \&$ increase his utility. When $M U_{x}<P_{x}$, he can curtail his purchase until he co able to equate $M U_{x}$ with P_{x}.
So in the cardinal approach, a consumer attains maximum satisfaction when $M U_{x}=P_{x}$.
Note:
When $U=f(x, y)$

$$
M U_{x} / P_{x}=M U_{y} / P_{y}
$$

