1.4 Impedance

Key Words: complex currents and voltages. Impedance Phasor Diagrams

V

1.4 Impedance

# Complex voltage, Complex current, Complex Impedance

• AC steady-state analysis using phasors allows us to express the relationship between current and voltage using a formula that looks likes Ohm's law:

$$\dot{V} = \dot{I}Z$$
  
 $Z$  is called impedance.  
measured in ohms ( $\Omega$ )  
 $= V_m e^{j\varphi_v} = V_m \angle \varphi_v$ 

$$I = I_m e^{j\varphi_i} = I_m \angle \varphi_i$$

$$Z = \frac{\dot{V}}{\dot{I}} = \frac{V_m}{I_m} e^{j(\varphi_v - \varphi_i)} = |Z| e^{j\varphi} = |Z| \angle \varphi$$

#### 1.4 Impedance

## **Complex Impedance**

$$Z = \frac{\dot{V}}{\dot{I}} = \frac{V_m}{I_m} e^{j(\varphi_v - \varphi_i)} = |Z| e^{j\varphi} = |Z| \angle \varphi$$

- Complex impedance describes the relationship between the voltage across an element (expressed as a phasor) and the current through the element (expressed as a phasor)
- Impedance is a complex number and is **not** a phasor (why?).
- Impedance depends on frequency

#### 1.4 Impedance

### **Complex Impedance**

Resistor——The impedance is R $Z_R = R$   $\Delta \varphi = 0$ ; or  $Z_R = R \angle 0$ 

Capacitor——The impedance is 
$$1/j\omega C$$
  

$$Z_{c} = \frac{1}{\omega C} e^{-j\frac{\pi}{2}} = \frac{-j}{\omega C} = -jX_{c} \quad \text{or} \quad Z_{C} = \frac{1}{\omega C} \angle -90^{\circ}$$

$$(\Delta \varphi = \varphi_{v} - \varphi_{i} = -\frac{\pi}{2})$$

Inductor—The impedance is  $j\omega L$ 

$$Z_L = \omega L e^{j\frac{\pi}{2}} = j\omega L = jX_L$$
 or  $Z_L = \omega L \angle 90^\circ$ 

$$(\Delta \varphi = \varphi_v - \varphi_i = \frac{\pi}{2})$$

k=1

#### 1.4 Impedance

#### **Complex Impedance**

Impedance in series/parallel can be combined as resistors.



1.4 Impedance

#### **Complex Impedance**



1.4 Impedance

## **Complex Impedance**

Phasors and complex impedance allow us to use <u>Ohm's law</u> with <u>complex numbers</u> to compute current from voltage and voltage from current



- How do we find  $V_c$ ?
- First compute impedances for resistor and capacitor:

 $Z_R = 20k\Omega = 20k\Omega \angle 0^\circ$  $Z_C = 1/j (377 *1\mu F) = 2.65k\Omega \angle -90^\circ$ 

1.4 Impedance

#### **Complex Impedance**





#### 1.4 Impedance

## **Complex Impedance**

Impedance allows us to use the same solution techniques for AC steady state as we use for DC steady state.

- All the analysis techniques we have learned for the linear circuits are applicable to compute phasors
  - KCL & KVL
  - node analysis / loop analysis
  - superposition
  - Thevenin equivalents / Norton equivalents
  - source exchange
- The only difference is that now complex numbers are used.

1.4 Impedance

### Kirchhoff's Laws

KCL and KVL hold as well in phasor domain.

KCL: 
$$\sum_{k=1}^{n} i_k = 0$$
  $i_k^-$  Transient current of the #k branch

$$\sum_{k=1}^{n} \dot{I}_{k} = 0$$

KVL:  $\sum_{k=1}^{n} v_k = 0$   $v_k^-$  Transient voltage of the #k branch

$$\sum_{k=1}^{n} \dot{V_k} = 0$$

1.4 Impedance

## Admittance

- *I* = *YV*, *Y* is called admittance, the reciprocal of impedance, measured in siemens (S)
- Resistor:
  - The admittance is 1/R
- Inductor:
  - The admittance is 1/*j*ω*L*
- Capacitor:
  - The admittance is *j* ω *C*

Sinusoidal Steady State Analysis

1.4 Impedance

## **Phasor Diagrams**

- A phasor diagram is just a graph of several phasors on the complex plane (using real and imaginary axes).
- A phasor diagram helps to visualize the relationships between currents and voltages.

