1.4 Impedance

Key Words:
complex currents and voltages.
Impedance
Phasor Diagrams
1.4 Impedance

Complex voltage, Complex current, Complex Impedance

- AC steady-state analysis using phasors allows us to express the relationship between current and voltage using a formula that looks likes Ohm's law:

$$
\begin{gathered}
\dot{V}=\dot{I} Z \\
\dot{V}=V_{m} e^{j \varphi_{v}}=V_{m} \angle \varphi_{v} \\
\dot{I}=I_{m} e^{j \varphi_{i}}=I_{m} \angle \varphi_{i} \\
\text { measured in oh }
\end{gathered}
$$

1.4 Impedance

Complex Impedance

$$
Z=\frac{\dot{V}}{\dot{I}}=\frac{V_{m}}{I_{m}} e^{j\left(\varphi_{v}-\varphi_{i}\right)}=|Z| e^{j \varphi}=|Z| \angle \varphi
$$

- Complex impedance describes the relationship between the voltage across an element (expressed as a phasor) and the current through the element (expressed as a phasor)
- Impedance is a complex number and is not a phasor (why?).
- Impedance depends on frequency
1.4 Impedance

Complex Impedance

Resistor——The impedance is R

$$
Z_{R}=R \quad \Delta \varphi=0 ; \text { or } Z_{R}=R \angle 0
$$

Capacitor- The impedance is $1 / j \omega C$

$$
\begin{aligned}
& Z_{c}=\frac{1}{\omega C} e^{-j \frac{\pi}{2}}=\frac{-j}{\omega C}=-j X_{c} \quad \text { or } \quad Z_{C}=\frac{1}{\omega C} \angle-90^{\circ} \\
& \left(\Delta \varphi=\varphi_{v}-\varphi_{i}=-\frac{\pi}{2}\right)
\end{aligned}
$$

Inductor-—The impedance is $j \omega L$

$$
\begin{aligned}
& Z_{L}=\omega L e^{j \frac{\pi}{2}}=j \omega L=j X_{L} \quad \text { or } \quad Z_{L}=\omega L \angle 90^{\circ} \\
& \left(\Delta \varphi=\varphi_{v}-\varphi_{i}=\frac{\pi}{2}\right)
\end{aligned}
$$

1.4 Impedance

Complex Impedance
Impedance in series/parallel can be combined as resistors.

$Z=Z_{1}+Z_{2}+\ldots+Z_{n}=\sum_{k=1}^{n} Z_{k}$
Voltage divider:

$$
\dot{V}_{i}=\dot{V} \frac{Z_{i}}{\sum_{k=1}^{n} Z_{k}}
$$

$$
\frac{1}{Z}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\ldots+\frac{1}{Z_{n}}=\sum_{k=1}^{n} \frac{1}{Z_{k}}
$$

Current divider:

$$
\dot{I}_{1}=\dot{I} \frac{Z_{2}}{Z_{1}+Z_{2}} \quad \dot{I}_{2}=\dot{I} \frac{Z_{1}}{Z_{1}+Z_{2}}
$$

1.4 Impedance

Complex Impedance

P4.8,

$$
\begin{aligned}
& \stackrel{Z_{1}}{\mathrm{Z}_{3}} \stackrel{\dot{I_{3}}}{\stackrel{\mathrm{z}}{2}} \quad \dot{\mathrm{z}}=\dot{I}_{1} \frac{Z_{2}}{Z+Z_{2}} \\
& \dot{\mathrm{z}} \\
& \dot{I_{1}}=\frac{\dot{V}}{Z_{1}+\left(\frac{1}{Z_{2}}+\frac{1}{Z}\right)^{-1}}=\frac{\dot{V}\left(Z+Z_{2}\right)}{Z Z_{1}+Z_{2} Z_{1}+Z Z_{2}} \\
& \dot{I}=\frac{\dot{V} Z_{2}}{Z Z_{1}+Z_{2} Z_{1}+Z Z_{2}}
\end{aligned}
$$

1.4 Impedance

Complex Impedance

Phasors and complex impedance allow us to use Ohm's law with complex numbers to compute current from voltage and voltage from current

- How do we find V_{c} ?
- First compute impedances for resistor and capacitor:

$$
\begin{gathered}
\mathrm{Z}_{R}=20 \mathrm{k} \Omega=20 \mathrm{k} \Omega \angle 0^{\circ} \\
\mathrm{Z}_{C}=1 / j(377 * 1 \mu \mathrm{~F})=2.65 \mathrm{k} \Omega \angle-90^{\circ}
\end{gathered}
$$

1.4 Impedance

Complex Impedance
P4.9

Now use the voltage divider to find \boldsymbol{V}_{C} :

$$
V_{C}=10 V \angle 0^{\circ}\left(\frac{2.65 k \Omega \angle-90^{\circ}}{2.65 k \Omega \angle-90^{\circ}+20 k \Omega \angle 0^{\circ}}\right)
$$

$2.65 \mathrm{k} \Omega \angle-90^{\circ}$

$$
\begin{aligned}
\mathbf{V}_{C} & =10 \mathrm{~V} \angle 0^{\circ} \frac{2.65 \angle-90^{\circ}}{20.17 \angle-7.54^{\circ}} \\
& =1.31 \mathrm{~V} \angle-82.46^{\circ}
\end{aligned}
$$

1.4 Impedance

Complex Impedance

Impedance allows us to use the same solution techniques for AC steady state as we use for DC steady state.

- All the analysis techniques we have learned for the linear circuits are applicable to compute phasors
- KCL \& KVL
- node analysis / loop analysis
- superposition
- Thevenin equivalents / Norton equivalents
- source exchange
- The only difference is that now complex numbers are used.
1.4 Impedance

Kirchhoff's Laws

KCL and KVL hold as well in phasor domain.
KCL: $\quad \sum_{k=1}^{n} i_{k}=0$
$i_{k}-$ Transient current of the $\# k$ branch

$$
\sum_{k=1}^{n} \dot{I}_{k}=0
$$

KVL: $\quad \sum_{k=1}^{n} v_{k}=0 \quad v_{k}-$ Transient voltage of the ${ }^{\#} k$ branch

$$
\sum_{k=1}^{n} \dot{V}_{k}=0
$$

1.4 Impedance

Admittance

- $\boldsymbol{I}=\mathbf{Y} \boldsymbol{V}, \boldsymbol{Y}$ is called admittance, the reciprocal of impedance, measured in siemens (S)
- Resistor:
- The admittance is $1 / R$
- Inductor:
- The admittance is $1 / j \omega L$
- Capacitor:
- The admittance is $j \omega C$

1.4 Impedance

Phasor Diagrams

- A phasor diagram is just a graph of several phasors on the complex plane (using real and imaginary axes).
- A phasor diagram helps to visualize the relationships between currents and voltages.

$$
\begin{aligned}
& I=2 \mathrm{~mA} \angle 40^{\circ}, \quad V_{R}=2 \mathrm{~V} \angle 40^{\circ} \\
& V_{C}=5.31 \mathrm{~V} \angle-50^{\circ}, \quad V=5.67 \mathrm{~V} \angle-29.37^{\circ}
\end{aligned}
$$

Imaginary Axis

