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Faraday’s Law

» Faraday discovered that the induced emf
Vemf(in volts), in any closed circuit is
equal to the time rate of change of the
magnetic flux linkage by the circuit.

 This is called Faraday's law, and it can be
expressed as
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Faraday’s Law

* where N is the number of turns in the
circuit and W is the flux through each turn.
The negative sigh shows that the induced
voltage acts in such a way as to oppose the
flux producing it. This is known as Lenz's
law and it emphasizes the fact that the
direction of current flow in the circuit is
such that the induced magnetic field
produced by the induced current will
oppose the original magnetic field.



Tra_nsformer and Motional EMF
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In terms of E and B, eq. | can be written as
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The variation of flux with time may be caused in three ways:
|. By having a stationary loop in a time-varying B field
2. By having a time-varying loop area in a static B field
3. By having a time-varying loop area in a time-varying B field.



Stationary loop in a time varying B
field

e This is the case portrayed in Figure below
where a stationary conducting loop is in a
time varying magnetic B field. Above
equation becomes
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Stationary loop in a time varying B
field

e This emf induced by the time-varying
current (producing the time-varying B
field) in a stationary loop is often referred
to as transformer emf in power analysis
since it is due to transformer action. By
applying Stokes's theorem to the middle
term in eq., we obtain
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Stationary loop in a time varying B
field

* For the two integrals to be equal, their
integrands must be equal; that is,
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Moving loop in stationary B field

* When a conducting loop is moving in a
static B field, an emf is induced in the

loop.
* We recall that the force on a charge
moving with uniform velocity u in a
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Moving loop in a time varying B field

 This is the general case in which a moving
conducting loop is in a time-varying
magnetic field. Both transformer emf and
motional emf are present. Combining
above equations gives the total emf as
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Moving loop in stationary B field

We define the motional electric field K, as

F
E,=—=uxB
0

If we consider a conducting loop, moving with uniform velocity  as consisting of a large
number of free electrons, the emf induced in the loop is
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Moving loop in stationary B field

* This type of emf is called motional emf
or flux-cutting emf because it is due to
motional action.

By applying Stokes's theorem
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Example |

A conducting bar can slide freely over two conducting rails as shown in Figure  Calcu-
late the induced voltage in the bar

(a) If the bar is stationed at y = 8 cm and B = 4 cos 10° a, mWb/m’
(b) If the bar slides at a velocity u = 20a, m/s and B = 4a, mWh/m?
(c) If the bar slides at a velocity u = 20a, m/s and B = 4 cos (10°% — y) a, mWb/m*
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Solution

(@) In this case, we have transformer emf given by

- 008 pi.06
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== = = 007010% sin 10% dr dy
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= 4(10°)0.08)(0.06)sin 10°s
= 19.2sin 10%V

The polanty of the induced voltage (according to Lenz's law) is such that point P on the
bar 15 at lower potential than (' when B is increasing



Solution

(b) This 15 the case of motional emt:
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Solution (c)
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— 80(107%)(0.06) cos(10% — y)
()

= 240 cos(10°r — y) — 240 cos 10° — 4.8(107%) cos(10% = y)
= 240 cos(10% — y) — 240 cos 10%

= 240 cos(10% ~ y")




Displacement Current

For static EM fields, we recall that
VXH=]

But the divergence of the curl of any vector field is identically zero (see Example 3.10).
Hence,

V-(VXH)=0=V-]

The continuity of current in eq. {3.43), however, requires that

Thus egs. (9.18) and (9.19) are obviously incompatible for time-varying conditions. We
must modity eq. To do this, we add a term to eq, 50
that 1t becomes
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Displacement Current

where J, is to be determined and defined. Again, the divergence of the curl of any vector is
zero. Hence:

V(VXH)=0=V:-J+ V-],
In order for eq. (9.21) to agree with eq. (9.19),
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Displacement Current

* This is Maxwell's equation (based on
Ampere’'s circuit law) for a time-varying
field. The term ]Jd = dD/dt is known as and
J is the conduction current density.

Based on the displacement current density, we define the displacement current as
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Example
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Solution
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which is the same as the conduction current, given by
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Generalised Maxwell’s Equation

Ceneralized Forms of Maxwell's Equations

Differential Form Integral Form Remarks
V-D=ap, % D d8 = J o, dv Gauss's law
5 i
V-B=10 T B-aS=10 Nonexistence of isolated
‘8 magnetic charge®
dB ' i
?sz_E {}E-dl=—a [B-dﬁ Faraday’s law
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Constitutive Equations

D=¢ck=¢gE+P
B =uH = g, (H+ M)

= gE + p,u



In general, a phasor could be scalar or vector, If a vector A(x, y, z, {) is a time-harmonic
field, the phasor form of A 1s A,(x, y, 2); the two quantities are related as

A = Re(Ae™)

Simularly,



Time-Harmonic Maxwell’s Equations

Time-Harmonic Maxwell's Equations
Assuming Time Factor e

Point Form Integral Form
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