NUMERICAL INTEGRATION

Abhishek Kumar Chandra

The process of evaluating a definite integral from a set of tabulated values of the integrand f(x) is called numerical integration.

This process when applied to a function of a single variable, is known as quadrature.

Newton-Cotes Quadrature Formula

Let $I = \int_{a}^{b} f(x) dx$ where f(x) takes the values $y_0, y_1, y_2, \dots, y_n$ for $x = x_0$, y = f(x)**X**₁, **X**₂, **X**_n. Let us divide the interval y_1 y_0 y_n y_2 (a, b) into n sub-intervals of width h so that $x_0 = a, x_1 = x_0 + h, x_2 = x_0 + h$ $x_0 = x_0 + h = x_0 + 2h$ $x_0 + nh$ 2h,, $x_n = x_0 + nh = b$. Then Abhishek Kumar Chandra 129 Saturday, November 13, 2021

$$\begin{split} I &= \int_{x_0}^{x_{0+nh}} f(x) dx = h \int_0^n f(x_0 + rh) dr, \text{ Putting } \mathbf{x} = \mathbf{x}_0 + rh, \, d\mathbf{x} = h dr \\ &= h \int_0^n [y_0 + r\Delta y_0 + \frac{r(r-1)}{2!} \Delta^2 y_0 + \frac{r(r-1)(r-2)}{3!} \Delta^3 y_0 \\ &\quad + \frac{r(r-1)(r-2)(r-3)}{4!} \Delta^4 y_0 + \frac{r(r-1)(r-20(r-3)(r-4)}{5!} \Delta^5 y_0 \\ &\quad + \frac{r(r-1)(r-2)(r-3)(r-4)(r-5)}{6!} \Delta^6 y_0 + \dots \Big] dr \end{split}$$

[by Newton's forward interpolation formula] Integrating term by term, we obtain

$$\begin{split} \int_{x_0}^{x_0+nh} f(x)dx &= nh\left[y_0 + \frac{n}{2}\Delta y_0 + \frac{n(2n-3)}{12}\Delta^2 y_0 + \frac{n(n-2)^2}{24}\Delta^3 y_0\right] \\ &+ \left(\frac{n^4}{5} - \frac{3n^3}{2} + \frac{11n^2}{3} - 3n\right)\frac{\Delta^4 y_0}{4!} + \left(\frac{n^5}{6} - 2n^4 + \frac{34n^3}{4} - \frac{50n^2}{3} + 12n\right)\frac{\Delta^5 y_0}{5!} \\ &+ \left(\frac{n^6}{7} - \frac{15n^5}{6} + 17n^4 - \frac{225n^3}{4} + \frac{274n^2}{3} - 60n\right)\frac{\Delta^6 y_0}{6!} + \dots \end{bmatrix} \end{split}$$

Abhishek Kumar Chandra

This is known as Newton-Cotes quadrature formula.

From this general formula, we deduce the following important quadrature rules by taking n = 1, 2, 3, ...

Trapezoidal rule

Putting n = 1 in Newton-Cotes quadrature formula and the curve between point (x_0, y_0) and (x_1, y_1) approximate as a straight line i.e., a polynomial of first order so that differences of order higher than first become zero, we get

Abhishek Kumar Chandra

Similarly $\int_{x_0+h}^{x_0+2h} f(x)dx = h\left(y_1 + \frac{1}{2}\Delta y_1\right) = \frac{h}{2}(y_1 + y_2)$

$$\int_{x_0+(n-1)}^{x_0+nh} f(x)dx = \frac{h}{2}(y_{n-1}+y_n)$$

Adding these n integrals, we obtain

$$\int_{x_0}^{x_0+nh} f(x)dx = \frac{h}{2}[(y_0+y_n)+2(y_1+y_2+\dots+y_{n-1})]$$

This is known as the trapezoidal rule.

Simpson's one-third rule

Putting n = 2 in cot's formula and the curve through (x_0, y_0) , (x_1, y_1) , and (x_2, y_2) approximates as a parabola, i.e., a

polynomial of the second order so y that differences of order higher than the second vanish, we get

$$\int_{x_0}^{x_0+2h} f(x)dx = 2h(y_0 + \Delta y_0 + \frac{1}{6}\Delta^2 y_0) = \frac{h}{3}(y_0 + 4y_1 + y_2)$$

Similarly
$$\int_{x_0+2h}^{x_0+4h} f(x)dx = \frac{h}{3}(y_2 + 4y_3 + y_4)$$

$$\int_{x_0+(n-2)h}^{x_0+nh} f(x)dx = \frac{h}{3}(y_{n-2} + 4y_{n-1} + y_n), \text{ n being even}$$

Adding all these integrals, we have when n is even
$$\int_{x_0}^{x_0+nh} f(x)dx = \frac{h}{3}[(y_0+y_n)+4(y_1+y_3+\ldots+y_{n-1})+2(y_2+y_4+\ldots+y_{n-2})]$$

This is known as the Simpson's one-third rule or simply Simpson's rule and is most commonly used.

Simpson's three-eighth rule

Putting n = 3 in cot's formula and the curve through points (x_i, y_i) : i = 0, 1, 2, 3 as a polynomial of the third order so that differences above the third order vanish, we get Abhishek Kumar Chandra

$$\begin{aligned} y & y_{0} & y_{1} & y_{1} & y_{2} \\ 0 & x_{0} & x_{1} & x_{2} & x_{3} & x_{n} & x \\ \hline \int_{x_{0}}^{x_{0}+3h} f(x)dx &= 3h\left(y_{0} + \frac{3}{2}\Delta y_{0} + \frac{3}{4}\Delta^{2}y_{0} + \frac{1}{8}\Delta^{3}y_{0}\right) \\ &= \frac{3h}{8}(y_{0} + 3y_{1} + 3y_{2} + y_{3}) \end{aligned}$$

Similarly
$$\int_{x_{0}+3h}^{x_{0}+5h} f(x)dx &= \frac{3h}{8}(y_{3} + 3y_{4} + 3y_{5} + y_{6}) \text{ and so on} \\ \text{Adding all such expressions from } x_{0} \text{ to } x_{0} + \text{ nh, where n is a multiple of 3, we obtain} \\ \int_{x_{0}}^{x_{0}+nh} f(x)dx &= \frac{3h}{8}[(y_{0} + y_{n}) + 3(y_{1} + y_{2} + y_{4} + y_{5} + \dots + y_{n-1}) \\ &+ 2(y_{3} + y_{6} + \dots + y_{n-3})] \end{aligned}$$

Abhishek Kumar Chandra

Gaussian Quadrature

All methods described previously are based on equally spaced data. Therefore, if n points are considered, an $(n-1)^{st}$ degree polynomial can be fitted to the data points are integrated.

$$I = \int_{a}^{b} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i})$$

 x_i are the location at which function f(x) is known and w_i are weighting factor.

When a known function is to be integrated, an additional degree of freedom exist.

If n points are used, 2n parameters are available $(x_i \text{ and } w_i)$ so it is possible to fit a polynomial of degree (2n-1).

Gaussian quadrature is integration method which uses the same number of functional values but with different spacing and yields better accuracy by choosing the value of x_i appropriately and w_i .

Abhishek Kumar Chandra

Gauss simplify the development of formula

$$I = \int_{-1}^{1} f(t)dt = \sum_{i=1}^{n} c_i f(t_i)$$

For two points t_1 and t_2 and weighting factor c_1 and c_2 So 4 parameter fit the polynomial up to degree 3 such as f(t) = 1, t, t^2, t^3 .

$$I[f(t) = 1] = \int_{-1}^{1} dt = 2 = c_1(1) + c_2(1) = c_1 + c_2$$
$$I[f(t) = t] = \int_{-1}^{1} t dt = 0 = c_1(t_1) + c_2(t_2)$$
$$I[f(t) = t^2] = \int_{-1}^{1} t^2 dt = 2/3 = c_1(t_1^2) + c_2(t_2^2)$$
$$I[f(t) = t^3] = \int_{-1}^{1} t^3 dt = 0 = c_1(t_1^3) + c_2(t_2^3)$$

Solve the equations for $t_1 t_2 c_1, c_2$

$$t_1 = \frac{-1}{\sqrt{3}}, t_2 = \frac{1}{\sqrt{3}}, c_1 = c_2 = 1$$

Abhishek Kumar Chandra

$$I = \int_{-1}^{1} f(t)dt = f\left(\frac{-1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

Guassian quadrature parameter

No. of Points n	t _i	C _i	Order
2	-1/√3 1/√3	1	3
3	$ \begin{array}{c} -\sqrt{0.6} \\ 0 \\ \sqrt{0.6} \end{array} $	5/9 8/9 5/9	5
4	-0.8611363116 -0.3399810436 0.3399810436 0.8611363116	0.3478548451 0.6521451549 0.6521451549 0.3478548451	7

In general, the limits of the integral $\int_a^b f(x)dx$ are changed to -1 to 1 by means of the transformation

Transform from x space to t space

x = mt + pIntegration limit x = a t = -1 x = b t = 1Put into transformation equ. $a = m(-1) + p \qquad b = m(1) + p$ Find m and p $m = (b-a)/2 \qquad p = (b+a)/2$ x = [(b-a)/2]t + [(b+a)/2]

$$I = \int_{a}^{b} f(x)dx = \int_{-1}^{1} f(mt+p)mdt = \frac{(b-a)}{2} \sum_{i=1}^{n} c_{i}f(t_{i})$$

Abhishek Kumar Chandra