NUMERICAL INTEGRATION

The process of evaluating a definite integral from a set of tabulated values of the integrand $f(x)$ is called numerical integration.
This process when applied to a function of a single variable, is known as quadrature.
Newton-Cotes Quadrature Formula
Let $\quad I=\int_{a}^{b} f(x) d x$
where $f(x)$ takes the values $y_{0}, y_{1}, y_{2}, \ldots \ldots y_{n}$ for $x=x_{0}$, $x_{1}, x_{2}, \ldots \ldots . x_{n}$.
Let us divide the interval (a, b) into n sub-intervals of width h so that
$x_{0}=a, x_{1}=x_{0}+h, x_{2}=x_{0}+$ $2 h, \ldots \ldots . ., x_{n}=x_{0}+n h=b$.

$$
\begin{aligned}
& I=\int_{x_{0}}^{x_{0+n h}} f(x) d x=h \int_{0}^{n} f\left(x_{0}+r h\right) d r \text {, Putting } x=x_{0}+r h, \mathrm{~d} x=h d r \\
& =h \int_{0}^{n}\left[y_{0}+r \Delta y_{0}+\frac{r(r-1)}{2!} \Delta^{2} y_{0}+\frac{r(r-1)(r-2)}{3!} \Delta^{3} y_{0}\right. \\
& \quad+\frac{r(r-1)(r-2)(r-3)}{4!} \Delta^{4} y_{0}+\frac{r(r-1)(r-20(r-3)(r-4)}{5!} \Delta^{5} y_{0} \\
& \left.\quad+\frac{r(r-1)(r-2)(r-3)(r-4)(r-5)}{6!} \Delta^{6} y_{0}+\ldots\right] d r
\end{aligned}
$$

[by Newton's forward interpolation formula]
Integrating term by term, we obtain

$$
\begin{aligned}
& \int_{x_{0}}^{x_{0}+n h} f(x) d x=n h\left[y_{0}+\frac{n}{2} \Delta y_{0}+\frac{n(2 n-3)}{12} \Delta^{2} y_{0}+\frac{n(n-2)^{2}}{24} \Delta^{3} y_{0}\right. \\
& +\left(\frac{n^{4}}{5}-\frac{3 n^{3}}{2}+\frac{11 n^{2}}{3}-3 n\right) \frac{\Delta^{4} y_{0}}{4!}+\left(\frac{n^{5}}{6}-2 n^{4}+\frac{34 n^{3}}{4}-\frac{50 n^{2}}{3}+12 n\right) \frac{\Delta^{5} y_{0}}{5!} \\
& \left.\quad+\left(\frac{n^{6}}{7}-\frac{15 n^{5}}{6}+17 n^{4}-\frac{225 n^{3}}{4}+\frac{274 n^{2}}{3}-60 n\right) \frac{\Delta^{6} y_{0}}{6!}+\ldots\right]
\end{aligned}
$$

This is known as Newton-Cotes quadrature formula.
From this general formula, we deduce the following important quadrature rules by taking $n=1,2,3, \ldots$.

Trapezoidal rule

Putting $n=1$ in Newton-Cotes quadrature formula and the curve between point $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ approximate as a straight line i.e., a polynomial of first order so that differences of order higher than first become zero, we get

$$
\underset{\int_{0}}{x_{0}+h}
$$

Similarly

$$
\int_{x_{0}+h}^{x_{0}+2 h} f(x) d x=h\left(y_{1}+\frac{1}{2} \Delta y_{1}\right)=\frac{h}{2}\left(y_{1}+y_{2}\right)
$$

$$
\int_{x_{0}+(n-1)}^{x_{0}+n h} f(x) d x=\frac{h}{2}\left(y_{n-1}+y n\right)
$$

Adding these n integrals, we obtain

$$
\int_{x_{0}}^{x_{0}+n h} f(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\cdots+y_{n-1}\right)\right]
$$

This is known as the trapezoidal rule.
Simpson's one-third rule
Putting $n=2$ in cot's formula and the curve through (x_{0}, y_{0}), $\left(x_{1}, y_{1}\right)$, and $\left(x_{2}, y_{2}\right)$ approximates as a parabola, i.e., a polynomial of the second order so y_{A} that differences of order higher than the second vanish, we get

$$
\int_{x_{0}}^{x_{0}+2 h} f(x) d x=2 h\left(y_{0}+\Delta y_{0}+\frac{1}{6} \Delta^{2} y_{0}\right)=\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right)
$$

Similarly

$$
\int_{x_{0}+2 h}^{x_{0}+4 h} f(x) d x=\frac{h}{3}\left(y_{2}+4 y_{3}+y_{4}\right)
$$

$$
\int_{x_{0}+(n-2) h}^{x_{0}+n h} f(x) d x=\frac{h}{3}\left(y_{n-2}+4 y_{n-1}+y_{n}\right), n \text { being even }
$$

Adding all these integrals, we have when n is even

$$
\int_{x_{0}}^{x_{0}+n h} f(x) d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+\ldots+y_{n-1}\right)+2\left(y_{2}+y_{4}+\ldots y_{n-2}\right)\right]
$$

This is known as the Simpson's one-third rule or simply Simpson's rule and is most commonly used.

Simpson's three-eighth rule

Putting $n=3$ in cot's formula and the curve through points $\left(x_{i}, y_{i}\right): i=0,1,2,3$ as a polynomial of the third order so that differences above the third order vanish, we get

$$
\begin{aligned}
& \xrightarrow{4} \xrightarrow{4} \\
& \begin{array}{lllllll}
0 & x_{0} & x_{1} & x_{2} & x_{3} & x_{n} & x
\end{array} \\
& \int_{x_{0}}^{x_{0}+3 h} f(x) d x=3 h\left(y_{0}+\frac{3}{2} \Delta y_{0}+\frac{3}{4} \Delta^{2} y_{0}+\frac{1}{8} \Delta^{3} y_{0}\right) \\
& =\frac{3 h}{8}\left(y_{0}+3 y_{1}+3 y_{2}+y_{3}\right)
\end{aligned}
$$

Similarly

$$
\int_{x_{0}+3 h}^{x_{0}+5 h} f(x) d x=\frac{3 h}{8}\left(y_{3}+3 y_{4}+3 y_{5}+y_{6}\right) \text { and so on }
$$

Adding all such expressions from x_{0} to $x_{0}+n h$, where n is a multiple of 3 , we obtain

$$
\begin{array}{r}
\int_{x_{0}}^{x_{0}+n h} f(x) d x=\frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+\cdots+y_{n-1}\right)\right. \\
+2\left(y_{3}+y_{6}+\cdots+y_{n-3}\right)
\end{array}
$$

Gaussian Quadrature

All methods described previously are based on equally spaced data. Therefore, if n points are considered, an $(n-1)^{s t}$ degree polynomial can be fitted to the data points are integrated.

$$
I=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

x_{i} are the location at which function $f(x)$ is known and w_{i} are weighting factor.
When a known function is to be integrated, an additional degree of freedom exist.
If n points are used, $2 n$ parameters are available (x_{i} and w_{i}) so it is possible to fit a polynomial of degree ($2 n-1$).
Gaussian quadrature is integration method which uses the same number of functional values but with different spacing and yields better accuracy by choosing the value of x_{i} appropriately and w_{i}.

Gauss simplify the development of formula

$$
I=\int_{-1}^{1} f(t) d t=\sum_{i=1}^{n} c_{i} f\left(t_{i}\right)
$$

For two points t_{1} and t_{2} and weighting factor c_{1} and c_{2}
So 4 parameter fit the polynomial up to degree 3 such as $f(t)=1$, t, t^{2}, t^{3}.

$$
\begin{gathered}
I[f(t)=1]=\int_{-1}^{1} d t=2=c_{1}(1)+c_{2}(1)=c_{1}+c_{2} \\
I[f(t)=t]=\int_{-1}^{1} t d t=0=c_{1}\left(t_{1}\right)+c_{2}\left(t_{2}\right) \\
I\left[f(t)=t^{2}\right]=\int_{-1}^{1} t^{2} d t=2 / 3=c_{1}\left(t_{1}^{2}\right)+c_{2}\left(t_{2}^{2}\right) \\
I\left[f(t)=t^{3}\right]=\int_{-1}^{1} t^{3} d t=0=c_{1}\left(t_{1}^{3}\right)+c_{2}\left(t_{2}^{3}\right)
\end{gathered}
$$

Solve the equations for $t_{1} t_{2}, c_{1}, c_{2}$

$$
t_{1}=\frac{-1}{\sqrt{3}}, t_{2}=\frac{1}{\sqrt{3}} \quad c_{1}=c_{2}=1
$$

$$
I=\int_{-1}^{1} f(t) d t=f\left(\frac{-1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)
$$

Guassian quadrature parameter

No. of Points \boldsymbol{n}	$\mathbf{t}_{\mathbf{i}}$	$\mathbf{c}_{\mathbf{i}}$	Order
2	$-1 / \sqrt{3}$	1	3
	$1 / \sqrt{3}$	1	
3	$-\sqrt{0.6}$	$5 / 9$	5
	0	$8 / 9$	
	$\sqrt{0.6}$	$5 / 9$	
4	-0.8611363116	0.3478548451	7
	-0.3399810436	0.6521451549	
	0.3399810436	0.6521451549	
	0.8611363116	0.3478548451	

In general, the limits of the integral $\int_{a}^{b} f(x) d x$ are changed to -1 to 1 by means of the transformation
Transform from x space to t space

$$
x=m t+p
$$

Integration limit $x=a \quad t=-1$

$$
x=b \quad t=1
$$

Put into transformation equ.
$a=m(-1)+p$

$$
b=m(1)+p
$$

Find m and p

$$
\begin{aligned}
& m=(b-a) / 2 \quad p=(b+a) / 2 \\
& x=[(b-a) / 2] t+[(b+a) / 2]
\end{aligned}
$$

$$
I=\int_{a}^{b} f(x) d x=\int_{-1}^{1} f(m t+p) m d t=\frac{(b-a)}{2} \sum_{i=1}^{n} c_{i} f\left(t_{i}\right)
$$

