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The process of evaluating a definite integral from a set of 
tabulated values of the integrand f(x) is called numerical 
integration.  

This process when applied to a function of a single variable, is 
known as quadrature. 

Newton-Cotes Quadrature Formula 

  Let 
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where f(x) takes the values 
y0, y1, y2, …… yn for x = x0, 
x1, x2, ……. xn. 

Let us divide the interval   
(a, b) into n sub-intervals of 
width h so that 

x0 = a, x1 = x0 + h, x2 = x0 + 
2h, ……. ., xn = x0 + nh = b. 
Then 



          Putting x = x0 + rh, dx= hdr 

 

 

 

 

 
 

[by Newton’s forward interpolation formula] 

Integrating term by term, we obtain 
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This is known as Newton-Cotes quadrature formula.  

From this general formula, we deduce the following important 
quadrature rules by taking n = 1, 2, 3, …. 
 

Trapezoidal rule 

Putting n = 1 in Newton-Cotes quadrature formula and the 
curve between point  (x0, y0) and (x1, y1) approximate as a 
straight line i.e., a polynomial of first order so that 
differences of order higher than first become zero, we get 
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Similarly 

 

 

 

Adding these n integrals, we obtain  

 
 

This is known as the trapezoidal rule. 
 

Simpson’s one-third rule 

Putting n = 2 in cot’s formula and the curve through (x0, y0), 
(x1, y1), and (x2, y2) approximates as a parabola, i.e., a 
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polynomial of the 
second order so 
that differences 
of order higher 
than the second 
vanish, we get 



 

 

Similarly 

 

 

                         n being even 

Adding all these integrals, we have when n is even 

 

 

This is known as the Simpson’s one-third rule or simply 

Simpson’s rule and is most commonly used.  
 

Simpson’s three-eighth rule 

Putting n = 3 in cot’s formula and the curve through points    

(xi, yi): i = 0, 1, 2, 3 as a polynomial of the third order so that 

differences above the third order vanish, we get 
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Similarly 

                                                                                  and so on  

Adding all such expressions from x0 to x0 + nh, where n is a 
multiple of 3, we obtain 
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Gaussian Quadrature  

All methods described previously are based on equally spaced 
data. Therefore, if n points are considered, an (n-1)st degree 
polynomial can be fitted to the data points are integrated. 

 � = ∫ � � �� =  ∑ ���(��)�
���

�

�
 

xi are the location at which function f(x) is known and wi are 
weighting factor. 

When a known function is to be integrated, an additional 
degree of freedom exist. 

If n points are used, 2n parameters are available (xi and wi) so 
it is possible to fit a polynomial of degree (2n-1). 

Gaussian quadrature is integration method which uses the same 
number of functional values but with different spacing and 
yields better accuracy by choosing the value of xi  
appropriately and wi. 
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Gauss simplify the development of formula 

� = � � � �� =  � ���(��)
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���
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��

 

For two points t1 and t2 and weighting factor c1 and c2 

So 4 parameter fit the polynomial up to degree 3 such as f(t) = 1, 
t, t2, t3. 

                               � � � = 1 = ∫ �� = 2 = �� 1 + �� 1 =
�

��
�� + �� 

�[� � = �]= � ��� = 0 = �� �1 + �� �2

�

��
 

�[� � = �2]= � �2�� = 2/3 = �� �1
2 + �� �2

2

�

��
 

�[� � = �3]= � �3�� = 0 = �� �1
3 + �� �2

3

�

��
 

Solve the equations for �1,
�2 ,

��,�� 

�� =
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�
, �� =

�

�
  �� = �� = 1   
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  Guassian quadrature parameter 
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No. of 
Points n 

ti ci 

 
Order 

2 -1/ 3 

1/ 3 

1 
1 

3 

3 - 0.6 
0 

0.6 

5/9 
8/9 
5/9 

5 

4 -0.8611363116 
-0.3399810436 
0.3399810436 
0.8611363116 

0.3478548451 
0.6521451549 
0.6521451549 
0.3478548451 

7 



In general, the limits of the integral ∫ � � ��
�

�
 are changed to  

-1 to 1 by means of the transformation 

Transform from x space to t space  

       x = m t + p 

Integration limit x = a         t = -1 

     x = b         t = 1 

Put into transformation equ. 

a = m(-1) + p  b = m(1) + p 

Find m and p 

m = (b-a)/2  p = (b+a)/2 

x = [(b-a)/2] t + [(b+a)/2]  

� = � � � ��
�
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(� − �)

2
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