
Subject Name: Object Oriented Programming Using C++

Subject Code: BCA-301 N

Subject Topic: Introduction to Function Overloading

Abhishek Dwivedi
Assistant Professor

Department of Computer Application

UIET, CSJM University, Kanpur

Function Overloading in C++

• Function overloading is a feature in C++ where two or more
functions can have the same name but different parameters.

• Function overloading can be considered as an example of
polymorphism feature in C++.

Different ways to Overload a Function

• By changing number of Arguments.

• By having different types of argument.

Function Overloading: Different Number of Arguments

• In this type of function overloading we define many
functions with same names but different number of
parameters of the same type.

// first definition

int sum (int x, int y)

{ cout << x+y; }

// second overloaded definition

int sum(int x, int y, int z)

{ cout << x+y+z; }

int main()

{

// sum() with 2 parameter will be called

sum (10, 20);

//sum() with 3 parameter will be called

sum(10, 20, 30);

}

Function Overloading: Different Datatype of Arguments

• In this type of overloading we define many functions with

same name and same number of parameters, but the type of

parameter is different.

int sum(int x, int y)

{ cout<< x+y; }

float sum(float x, float y)

{ cout << x+y; }

int main()

{

sum (10,20);

sum(10.5,20.5);

}

Constructor Overloading in C++

• In C++, We can have more than one constructor in a

class with same name, as long as each has a different list

of arguments. This concept is known as Constructor

Overloading and is quite similar to function overloading.

1. Overloaded constructors essentially have the same

name (name of the class) and different number of

arguments.

2. A constructor is called depending upon the number and

type of arguments passed.

3. While creating the object, arguments must be passed to

let compiler know, which constructor needs to be

called.

Example
Class ConstructorOverload

{

public:

int area;

ConstructorOverload() // Constructor with no parameters

{

area = 0;

}

ConstructorOverload(int a, int b) // Constructor with two parameters

{

area = a * b;

}

void displayArea()

{

cout<< area<< endl;

}

};

void main()

{

// Constructor Overloading

// with two different constructors

// of class name

ConstructorOverload obj1;

ConstructorOverload obj2(10, 20);

obj1.displayArea();

obj2.displayArea();

getch();

}

Functions that can not be Overloaded
• When function signatures are same, only the return type is

different, then we cannot overload the function.

int my_func()

{ return 5; }

char my_func()

{ return 'd'; }

• Member function declarations with the same name and the name

parameter-type-list cannot be overloaded if any of them is a static

member function declaration.

class My_Class

{ static void fun(int x)

{ //Something }

void fun(int x)

{ //something } };

• Parameter declarations that differ only in a pointer * versus an array

[] are equivalent. That is, the array declaration is adjusted to

become a pointer declaration. Only the second and subsequent array

dimensions are significant in parameter types.

int fun(int *ptr);

int fun(int ptr[]); // redeclaration of fun(int *ptr)

• Parameter declarations that differ only in the presence or absence of

const and/or volatile are equivalent.

int my_func(int x)

{ //Do something }

int my_func(const int x)

{ //do something }

References:

• www.studytonight.com

• www.tutorialpoint.com

• www.geeksforgeeks.org

• “Object oriented programming in C++”, Robert Lafore

• “Object oriented programming with C++”, E.Balagurusamy

