
Subject Name: Object Oriented Programming Using C++

Subject Code: BCA-301 N

Subject Topic: Member Function Definition Outside and Introduction to Constructor

Abhishek Dwivedi
Assistant Professor

Department of Computer Application

UIET, CSJM University, Kanpur

Functions definition : Outside the class
• To define a function outside of a class, scope resolution

operator :: is used.

• Syntax for declaring function outside of class

class class_name

{

........

public:

return_type function_name (args); //function declaration

};

//function definition outside class

return_type class_name :: function_name (args)

{

...........; // function definition

}

Example

#include <iostream>

class smallobj

{

private:

int somedata;

public:

void setdata(int d);

void showdata();

};

Void smallobj :: setdata(int d)

{

somedata=d;

}

Void smallobj :: showdata()

{

cout << "Data is : " << somedata << endl;

}

Passing an object within the class member function as an

argument

#include <iostream>

class A

{

public:

int n=100;

char ch='A';

void disp(A a)

{

cout<<a.n<<endl;

cout<<a.ch<<endl;

}

};

int main()

{

A obj;

obj.disp(obj);

return 0;

}

Constructor

• A constructor is a member function of a class which initializes
objects of a class. In C++, Constructor is automatically called
when object(instance of class) create. It is special member
function of the class.

A constructor is different from normal functions in following ways:

a. Constructor has same name as the class itself

b. Constructors don’t have return type

c. A constructor is automatically called when an object is

created.

d. If we do not specify a constructor, C++ compiler generates a

default constructor for us (expects no parameters and has an

empty body).

Example:
class constructorDemo

{

public:

int num;

char ch;

constructorDemo()

{ num = 100;

ch = 'A';

}

};

int main()

{

ConstructorDemo obj;

cout<<"num: "<<obj.num<<endl;

cout<<"ch: "<<obj.ch;

return 0;

}

Types of Constructors:
There are three types of Constructors:

▪ Default

▪ Parameterized

▪ Copy

Default Constructor: A default constructor doesn’t have any arguments

#include <iostream>

class Website

{

public:

Website() //Default constructor

{

cout<<"Welcome to Beginners Book"<<endl;

}

};

void main()

{

Website obj1;

Website obj2;

return 0;

}

Parameterized Constructor:
Constructors with parameters are known as Parameterized constructors. These type

of constructor allows us to pass arguments while object creation.

#include <iostream>

class Add

{

public:

Add(int num1, int num2) //Parameterized constructor

{

cout<<(num1+num2)<<endl;

}

};

int main(void)

{

Add obj1(10, 20); // One way of creating object. This is known as implicit call to the constructor

Add obj2 = Add(50, 60); //Another way of creating object. This is known as explicit calling the constructor

return 0;

}

Copy constructor
• Copy Constructor is a type of constructor which is used

to create a copy of an already existing object of a class
type. It is usually of the form X (X &objectname),
where X is the class name.

• Syntax of Copy Constructor:

Classname(const classname &objectname)

{

. . . .

}

• As it is used to create an object, hence it is called a
constructor. And, it creates a new object, which is exact
copy of the existing copy, hence it is called copy
constructor.

Example
Class copyconstructor

{

private:

int x, y; //data members

public:

copyconstructor(int x1, int y1)

{ x = x1; y = y1; }

copyconstructor (const copyconstructor &sam) /* Copy constructor */

{ x = sam.x; y = sam.y; }

void display()

{ cout<<x<<" "<<y<<endl; }

};

int main()

{ copyconstructor obj1(10, 15); // Normal constructor

copyconstructor obj2 = obj1; // Copy constructor

cout<<"Normal constructor : ";

obj1.display();

cout<<"Copy constructor : ";

obj2.display();

return 0;

}

References:

• www.studytonight.com

• www.tutorialpoint.com

• www.geeksforgeeks.org

• “Object oriented programming in C++” Robert Lafore

• “Object oriented programming with C++”, E.Balagurusamy

