
Subject Name: Object Oriented Programming Using C++

Subject Code: BCA-301 N

Subject Topic: Order of Constructor Call in Inheritance

Abhishek Dwivedi
Assistant Professor

Department of Computer Application

UIET, CSJM University, Kanpur

Order of Constructor Call with Inheritance in C++

• Whenever we create an object of a class, the default

constructor of that class is invoked automatically to

initialize the members of the class.

If we inherit a class from another class and create an

object of the derived class, it is clear that the default

constructor of the derived class will be invoked but before

that the default constructor of all of the base classes will

be invoke, i.e the order of invocation is that the base

class’s default constructor will be invoked first and then

the derived class’s default constructor will be invoked.

Reason behind the base class’s constructor is called on

creating an object of derived class

• What happens when a class is inherited from other? The

data members and member functions of base class

comes automatically in derived class based on the access

specifiers but the definition of these members exists in

base class only. So when we create an object of derived

class, all of the members of derived class must be

initialized but the inherited members in derived class

can only be initialized by the base class’s constructor as

the definition of these members exists in base class only.

This is why the constructor of base class is called first

to initialize all the inherited members.

Example
class Parent

{

public:

Parent()

{

cout << "Inside base class" << endl;

}

};

class Child : public Parent

{

public:

Child()

{

cout << "Inside sub class" << endl;

}

};

void main()

{

Child obj; // creating object of sub class

getch();

}

• Output:

Inside base class

Inside sub class

Order of constructor call for Multiple Inheritance
• For multiple inheritance order of constructor call is, the base class’s

constructors are called in the order of inheritance and then the derived
class’s constructor.

class Parent1

{

public:

Parent1()

{

cout << "Inside first base class" << endl;

}

};

class Parent2

{

public:

Parent2()

{

cout << "Inside second base class" << endl;

}

};

class Child : public Parent1, public Parent2

{

public:

Child()

{

cout << "Inside child class" << endl;

}

};

void main()

{

Child obj1;

getch();

}

Order of constructor and Destructor call for a given order

of Inheritance

Calling the parameterized constructor of base class in derived

class constructor

• To call the parameterized constructor of base class when derived

class’s parameterized constructor is called, you have to explicitly

specify the base class’s parameterized.

• Syntax for derived class constructor:

Derived_constructor (arglist1,arglist2,……arglistN, arglistof_derivedclass) :

base1(arglist1),

base2(arglist2),

…….

baseN(arglistN),

{

//Body of derived constructor

}

class Parent

{

public:

Parent(int i)

{

int x =i;

cout << "Inside base class's parameterized

constructor" << endl;

}

};

class Child : public Parent

{

public:

Child(int j): Parent(j) // explicitly mention to call the Base class's parameterized constructor

{

cout << "Inside sub class's parameterized constructor" << endl;

}

};

void main()

{

Child obj1(10);

getch();

}

• Output:
1. Inside base class's parameterized constructor

2. Inside sub class's parameterized constructor

• Points to Remember

1. Whenever the derived class’s default constructor is called, the

base class’s default constructor is called automatically.

2. To call the parameterized constructor of base class inside the

parameterized constructor of sub class, we have to mention it

explicitly.

3. The parameterized constructor of base class cannot be called in

default constructor of sub class, it should be called in the

parameterized constructor of sub class.

References:

• www.studytonight.com

• www.tutorialpoint.com

• www.geeksforgeeks.org

• “Object oriented programming in C++” Robert Lafore

• “Object oriented programming with C++”, E.Balagurusamy

