
Subject Name: Object Oriented Programming Using C++

Subject Code: BCA-301 N

Subject Topic: Polymorphism

Abhishek Dwivedi
Assistant Professor

Department of Computer Application

UIET, CSJM University, Kanpur

Polymorphism

• The term "Polymorphism" is the combination of "poly" +

"morphs" which means many forms.

Compile time polymorphism

• The overloaded functions are invoked by matching the

type and number of arguments. This information is

available at the compile time and, therefore, compiler

selects the appropriate function at the compile time. It is

achieved by function overloading and operator

overloading which is also known as static binding or

early binding.

Run time polymorphism

• Run time polymorphism is achieved when the object's

method is invoked at the run time instead of compile

time. It is achieved by method overriding which is

also known as dynamic binding or late binding.

Requirements for Overriding a Function

• Inheritance should be there. Function overriding

cannot be done within a class. For this we require a

derived class and a base class.

• Function that is redefined must have exactly the same

declaration in both base and derived class, that means

same name, same return type and same parameter list.

Example
class Base

{

public:

void show()

{ cout << "Base class";

}

};

class Derived : public Base

{

public:

void show()

{

cout << "Derived Class";

}

}

void main()

{

Derived d;

d.show();

getch();

}

Function Call Binding using Base class Pointer

class Base

{

public:

void show()

{

cout << "Base class\n";

}

};

class Derived : public Base

{

public:

void show()

{

cout << "Derived Class\n";

}

} ;

void main()

{

Base *b; //Base class pointer

Derived d; //Derived class object

b = &d;

b->show(); //Early Binding Occurs

getch();

}

• Although, the object is of Derived class, still Base class's

method is called. This happens due to Early Binding.

• Compiler on seeing Base class's pointer, set call to Base

class's show() function, without knowing the actual object

type.

Virtual Functions

• Virtual Function is a function in base class, which is
overridden in the derived class, and which tells the compiler
to perform Late Binding on this function.

• Virtual Keyword is used to make a member function of the
base class Virtual.

• In Late Binding function call is resolved at runtime. Hence,
now compiler determines the type of object at runtime, and
then binds the function call. Late Binding is also
called Dynamic Binding or Runtime Binding.

Using Virtual Keyword

• Making base class's methods virtual by using virtual keyword
while declaring them. Virtual keyword will lead to Late
Binding of that method.

class Base

{

public:

virtual void show()

{ cout << "Base class\n"; }

};

class Derived : public Base

{

public:

void show()

{ cout << "Derived Class"; }

};

void main()

{

Base *b; //Base class pointer

Derived d; //Derived class object

b = &d;

b->show(); //Late Binding Occurs

getch()

}

• On using Virtual keyword with Base class's function, Late
Binding takes place and the derived version of function will be
called, because base class pointer pointes to Derived class
object.

References:

• www.studytonight.com

• www.tutorialpoint.com

• www.geeksforgeeks.org

• “Object oriented programming in C++” Robert Lafore

• “Object oriented programming with C++”, E.Balagurusamy

