
Subject Name: Object Oriented Programming Using C++

Subject Code: BCA-301 N

Subject Topic: Static Keyword in C++

Abhishek Dwivedi
Assistant Professor

Department of Computer Application

UIET, CSJM University, Kanpur



Static Keyword in C++

• Static is a keyword in C++ used to give special
characteristics to an element. Static elements are
allocated storage only once in a program lifetime in
static storage area. And they have a scope till the
program lifetime. Static Keyword can be used with
following:

1. Static variable in functions

2. Static Class Objects

3. Static Member Variable in class

4. Static Member Methods in class



Static Variables inside Functions
• Static variables when used inside function are initialized only once,

and then they hold there value even through function calls.

void counter()

{

static int count=0;

cout << count++;

}

void main()

{

for(int i=0;i<5;i++)

{

counter();

}

getch();

}



OUTPUT
Output of above program

0 1 2 3 4

output without using static variable

0 0 0 0 0

• If we do not use static keyword, the variable
count, is reinitialized every time
when counter() function is called, and gets
destroyed each time when counter() functions
ends. But, if we make it static, once initialized
count will have a scope till the end
of main() function and it will carry its value
through function calls too.

• If you don't initialize a static variable, they are by
default initialized to zero.



Static Class Objects

• Static keyword works in the same way for class

objects too. Objects declared static are allocated

storage in static storage area, and have scope till the

end of program.

• Static objects are also initialized using constructors

like other normal objects. Assignment to zero, on

using static keyword is only for primitive datatypes,

not for user defined datatypes.



Example
class Abc

{

public:

Abc()

{ i=0;

cout << "constructor“<<endl;

}

~Abc()

{

cout << "destructor“<<endl;

}

};

void main()

{

int x=0;

if(x==0)

{

static Abc obj;

}

cout << “End of main“<<endl;

getch();

}



OUTPUT
Output of above program

constructor 

End of main

destructor

output without using static variable

constructor 

destructor

End of main

• why was the destructor not called upon the end of the
scope of if condition, where the reference of
object obj should get destroyed. This is because
object was static, which has scope till the program's
lifetime, hence destructor for this object was called
when main() function exits.



Static Data Member in Class

• Static data members of class are those members which

are shared by all the objects. Static data member has a

single piece of storage, and is not available as separate

copy with each object, like other non-static data

members.

• Static member variables (data members) are not

initialized using constructor, because these are not

dependent on object initialization.

• Also, it must be initialized explicitly, always outside the

class.



Example

class X

{

public:

static int i;

X()

{

// construtor

}

};

int X::i=1; // initialized explicitly

void main()

{

X obj;

cout << obj.i; // prints value of i

getch();

}



References:

• www.studytonight.com

• www.tutorialpoint.com

• www.geeksforgeeks.org

• “Object oriented programming in C++”, Robert Lafore

• “Object oriented programming with C++”, E.Balagurusamy


